




























































































Estude fácil! Tem muito documento disponível na Docsity
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Prepare-se para as provas
Estude fácil! Tem muito documento disponível na Docsity
Prepare-se para as provas com trabalhos de outros alunos como você, aqui na Docsity
Os melhores documentos à venda: Trabalhos de alunos formados
Prepare-se com as videoaulas e exercícios resolvidos criados a partir da grade da sua Universidade
Responda perguntas de provas passadas e avalie sua preparação.
Ganhe pontos para baixar
Ganhe pontos ajudando outros esrudantes ou compre um plano Premium
Comunidade
Peça ajuda à comunidade e tire suas dúvidas relacionadas ao estudo
Descubra as melhores universidades em seu país de acordo com os usuários da Docsity
Guias grátis
Baixe gratuitamente nossos guias de estudo, métodos para diminuir a ansiedade, dicas de TCC preparadas pelos professores da Docsity
Shigley's Mechanical Engineering Design - 8th Edition with Solution of Problems
Tipologia: Notas de estudo
Oferta por tempo limitado
Compartilhado em 03/04/2012
4
(2)4 documentos
1 / 1514
Esta página não é visível na pré-visualização
Não perca as partes importantes!
Em oferta
McGraw−Hill Primis
ISBN: 0−390−76487−
Text:
Shigley’s Mechanical Engineering Design, Eighth Edition Budynas−Nisbett
Shigley’s Mechanical Engineering Design, Eighth Edition
Budynas−Nisbett
McGraw-Hill abc
Mechanical Engineering
http://www.primisonline.com
Copyright ©2006 by The McGraw−Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.
This McGraw−Hill Primis text may include materials submitted to McGraw−Hill for publication by the instructor of this course. The instructor is solely responsible for the editorial content of such materials.
111 0192GEN ISBN: 0−390−76487−
This book was printed on recycled paper.
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition
Front Matter Preface © The McGraw−Hill^1 Companies, 2008
Objectives This text is intended for students beginning the study of mechanical engineering design. The focus is on blending fundamental development of concepts with practi- cal specification of components. Students of this text should find that it inherently directs them into familiarity with both the basis for decisions and the standards of industrial components. For this reason, as students transition to practicing engineers, they will find that this text is indispensable as a reference text. The objectives of the text are to:
New to This Edition This eighth edition contains the following significant enhancements:
Preface
xv
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition
Front Matter Preface © The McGraw−Hill^3 Companies, 2008
Part 3: Design of Mechanical Elements Part 3 covers the design of specific machine components. All chapters have received general cleanup. The shaft chapter has been moved to the beginning of the section. The arrangement of chapters, along with any significant changes, is described below:
Part 4: Analysis Tools Part 4 includes a new chapter on finite element methods, and a new location for the chapter on statistical considerations. Instructors can reference these chapters as needed.
Preface xvii
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition
(^4) Front Matter Preface © The McGraw−Hill Companies, 2008
xviii Mechanical Engineering Design
Supplements The 8th^ edition of Shigley’s Mechanical Engineering Design features McGraw-Hill’s ARIS (Assessment Review and Instruction System). ARIS makes homework meaningful—and manageable—for instructors and students. Instructors can assign and grade text-specific homework within the industry’s most robust and versatile homework management sys- tem. Students can access multimedia learning tools and benefit from unlimited practice via algorithmic problems. Go to aris.mhhe.com to learn more and register! The array of tools available to users of Shigley’s Mechanical Engineering Design includes:
Student Supplements
Instructor Supplements (under password protection)
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition
(^6) Front Matter List of Symbols © The McGraw−Hill Companies, 2008
J Mechanical equivalent of heat, polar second moment of area, geometry factor j Unit vector in the y -direction K Service factor, stress-concentration factor, stress-augmentation factor, torque coefficient k Marin endurance limit modifying factor, spring rate k k variate, unit vector in the z -direction L Length, life, fundamental dimension length LN Lognormal distribution l Length M Fundamental dimension mass, moment M Moment vector, moment variate m Mass, slope, strain-strengthening exponent N Normal force, number, rotational speed N Normal distribution n Load factor, rotational speed, safety factor nd Design factor P Force, pressure, diametral pitch PDF Probability density function p Pitch, pressure, probability Q First moment of area, imaginary force, volume q Distributed load, notch sensitivity R Radius, reaction force, reliability, Rockwell hardness, stress ratio R Vector reaction force r Correlation coefficient, radius r Distance vector S Sommerfeld number, strength S S variate s Distance, sample standard deviation, stress T Temperature, tolerance, torque, fundamental dimension time T Torque vector, torque variate t Distance, Student’s t-statistic, time, tolerance U Strain energy U Uniform distribution u Strain energy per unit volume V Linear velocity, shear force v Linear velocity W Cold-work factor, load, weight W Weibull distribution w Distance, gap, load intensity w Vector distance X Coordinate, truncated number x Coordinate, true value of a number, Weibull parameter x x variate Y Coordinate y Coordinate, deflection y y variate Z Coordinate, section modulus, viscosity z Standard deviation of the unit normal distribution z Variate of z
xxiv Mechanical Engineering Design
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition
Front Matter List of Symbols © The McGraw−Hill^7 Companies, 2008
List of Symbols xxv
α Coefficient, coefficient of linear thermal expansion, end-condition for springs, thread angle β Bearing angle, coefficient Change, deflection δ Deviation, elongation ǫ Eccentricity ratio, engineering (normal) strain Normal distribution with a mean of 0 and a standard deviation of s ε True or logarithmic normal strain Ŵ Gamma function γ Pitch angle, shear strain, specific weight λ Slenderness ratio for springs L Unit lognormal with a mean of l and a standard deviation equal to COV μ Absolute viscosity, population mean ν Poisson ratio ω Angular velocity, circular frequency φ Angle, wave length ψ Slope integral ρ Radius of curvature σ Normal stress σ ′^ Von Mises stress S Normal stress variate σ ˆ Standard deviation τ Shear stress Shear stress variate θ Angle, Weibull characteristic parameter ¢ Cost per unit weight $ Cost
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition
I. Basics 1. Introduction to Mechanical Engineering Design
© The McGraw−Hill^9 Companies, 2008
3
Chapter Outline 1–1 Design 4 1–2 Mechanical Engineering Design 5 1–3 Phases and Interactions of the Design Process 5 1–4 Design Tools and Resources 8 1–5 The Design Engineer’s Professional Responsibilities 10 1–6 Standards and Codes 12 1–7 Economics 12 1–8 Safety and Product Liability 15 1–9 Stress and Strength 15 1–10 Uncertainty 16 1–11 Design Factor and Factor of Safety 17 1–12 Reliability 18 1–13 Dimensions and Tolerances 19 1–14 Units 21 1–15 Calculations and Significant Figures 22 1–16 Power Transmission Case Study Specifications 23
Introduction to Mechanical
Engineering Design
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition
I. Basics 1. Introduction to Mechanical Engineering Design
(^10) © The McGraw−Hill Companies, 2008
4 Mechanical Engineering Design
Mechanical design is a complex undertaking, requiring many skills. Extensive relation- ships need to be subdivided into a series of simple tasks. The complexity of the subject requires a sequence in which ideas are introduced and iterated. We first address the nature of design in general, and then mechanical engineering design in particular. Design is an iterative process with many interactive phases. Many resources exist to support the designer, including many sources of information and an abundance of computational design tools. The design engineer needs not only to develop competence in their field but must also cultivate a strong sense of responsibility and professional work ethic. There are roles to be played by codes and standards, ever-present economics, safety, and considerations of product liability. The survival of a mechanical component is often related through stress and strength. Matters of uncertainty are ever-present in engineer- ing design and are typically addressed by the design factor and factor of safety, either in the form of a deterministic (absolute) or statistical sense. The latter, statistical approach, deals with a design’s reliability and requires good statistical data. In mechanical design, other considerations include dimensions and tolerances, units, and calculations. The book consists of four parts. Part 1, Basics, begins by explaining some differ- ences between design and analysis and introducing some fundamental notions and approaches to design. It continues with three chapters reviewing material properties, stress analysis, and stiffness and deflection analysis, which are the key principles nec- essary for the remainder of the book. Part 2, Failure Prevention, consists of two chapters on the prevention of failure of mechanical parts. Why machine parts fail and how they can be designed to prevent fail- ure are difficult questions, and so we take two chapters to answer them, one on pre- venting failure due to static loads, and the other on preventing fatigue failure due to time-varying, cyclic loads. In Part 3, Design of Mechanical Elements, the material of Parts 1 and 2 is applied to the analysis, selection, and design of specific mechanical elements such as shafts, fasteners, weldments, springs, rolling contact bearings, film bearings, gears, belts, chains, and wire ropes. Part 4, Analysis Tools, provides introductions to two important methods used in mechanical design, finite element analysis and statistical analysis. This is optional study material, but some sections and examples in Parts 1 to 3 demonstrate the use of these tools. There are two appendixes at the end of the book. Appendix A contains many use- ful tables referenced throughout the book. Appendix B contains answers to selected end-of-chapter problems.
1–1 Design To design is either to formulate a plan for the satisfaction of a specified need or to solve a problem. If the plan results in the creation of something having a physical reality, then the product must be functional, safe, reliable, competitive, usable, manufacturable, and marketable. Design is an innovative and highly iterative process. It is also a decision-making process. Decisions sometimes have to be made with too little information, occasion- ally with just the right amount of information, or with an excess of partially contradictory information. Decisions are sometimes made tentatively, with the right reserved to adjust as more becomes known. The point is that the engineering designer has to be personally comfortable with a decision-making, problem-solving role.
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition
I. Basics 1. Introduction to Mechanical Engineering Design
(^12) © The McGraw−Hill Companies, 2008
6 Mechanical Engineering Design
adverse circumstance or a set of random circumstances that arises almost simultaneously. For example, the need to do something about a food-packaging machine may be indi- cated by the noise level, by a variation in package weight, and by slight but perceptible variations in the quality of the packaging or wrap. There is a distinct difference between the statement of the need and the definition of the problem. The definition of problem is more specific and must include all the spec- ifications for the object that is to be designed. The specifications are the input and out- put quantities, the characteristics and dimensions of the space the object must occupy, and all the limitations on these quantities. We can regard the object to be designed as something in a black box. In this case we must specify the inputs and outputs of the box, together with their characteristics and limitations. The specifications define the cost, the number to be manufactured, the expected life, the range, the operating temperature, and the reliability. Specified characteristics can include the speeds, feeds, temperature lim- itations, maximum range, expected variations in the variables, dimensional and weight limitations, etc. There are many implied specifications that result either from the designer’s par- ticular environment or from the nature of the problem itself. The manufacturing processes that are available, together with the facilities of a certain plant, constitute restrictions on a designer’s freedom, and hence are a part of the implied specifica- tions. It may be that a small plant, for instance, does not own cold-working machin- ery. Knowing this, the designer might select other metal-processing methods that can be performed in the plant. The labor skills available and the competitive situa- tion also constitute implied constraints. Anything that limits the designer’s freedom of choice is a constraint. Many materials and sizes are listed in supplier’s catalogs, for instance, but these are not all easily available and shortages frequently occur. Furthermore, inventory economics requires that a manufacturer stock a minimum number of materials and sizes. An example of a specification is given in Sec. 1–16. This example is for a case study of a power transmission that is presented throughout this text. The synthesis of a scheme connecting possible system elements is sometimes called the invention of the concept or concept design. This is the first and most impor- tant step in the synthesis task. Various schemes must be proposed, investigated, and
Figure 1– The phases in design, acknowledging the many feedbacks and iterations.
Identification of need
Definition of problem
Synthesis
Analysis and optimization
Evaluation
Presentation
Iteration
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition
I. Basics 1. Introduction to Mechanical Engineering Design
© The McGraw−Hill^13 Companies, 2008
Introduction to Mechanical Engineering Design 7
quantified in terms of established metrics.^1 As the fleshing out of the scheme progresses, analyses must be performed to assess whether the system performance is satisfactory or better, and, if satisfactory, just how well it will perform. System schemes that do not survive analysis are revised, improved, or discarded. Those with potential are optimized to determine the best performance of which the scheme is capable. Competing schemes are compared so that the path leading to the most competitive product can be chosen. Figure 1–1 shows that synthesis and analysis and optimization are intimately and iteratively related. We have noted, and we emphasize, that design is an iterative process in which we proceed through several steps, evaluate the results, and then return to an earlier phase of the procedure. Thus, we may synthesize several components of a system, analyze and optimize them, and return to synthesis to see what effect this has on the remaining parts of the system. For example, the design of a system to transmit power requires attention to the design and selection of individual components (e.g., gears, bearings, shaft). However, as is often the case in design, these components are not independent. In order to design the shaft for stress and deflection, it is necessary to know the applied forces. If the forces are transmitted through gears, it is necessary to know the gear specifica- tions in order to determine the forces that will be transmitted to the shaft. But stock gears come with certain bore sizes, requiring knowledge of the necessary shaft diame- ter. Clearly, rough estimates will need to be made in order to proceed through the process, refining and iterating until a final design is obtained that is satisfactory for each individual component as well as for the overall design specifications. Throughout the text we will elaborate on this process for the case study of a power transmission design. Both analysis and optimization require that we construct or devise abstract models of the system that will admit some form of mathematical analysis. We call these mod- els mathematical models. In creating them it is our hope that we can find one that will simulate the real physical system very well. As indicated in Fig. 1–1, evaluation is a significant phase of the total design process. Evaluation is the final proof of a success- ful design and usually involves the testing of a prototype in the laboratory. Here we wish to discover if the design really satisfies the needs. Is it reliable? Will it compete successfully with similar products? Is it economical to manufacture and to use? Is it easily maintained and adjusted? Can a profit be made from its sale or use? How likely is it to result in product-liability lawsuits? And is insurance easily and cheaply obtained? Is it likely that recalls will be needed to replace defective parts or systems? Communicating the design to others is the final, vital presentation step in the design process. Undoubtedly, many great designs, inventions, and creative works have been lost to posterity simply because the originators were unable or unwilling to explain their accomplishments to others. Presentation is a selling job. The engineer, when presenting a new solution to administrative, management, or supervisory persons, is attempting to sell or to prove to them that this solution is a better one. Unless this can be done successfully, the time and effort spent on obtaining the solution have been largely wasted. When designers sell a new idea, they also sell themselves. If they are repeatedly successful in selling ideas, designs, and new solutions to management, they begin to receive salary increases and promotions; in fact, this is how anyone succeeds in his or her profession.
(^1) An excellent reference for this topic is presented by Stuart Pugh, Total Design — Integrated Methods for Successful Product Engineering, Addison-Wesley, 1991. A description of the Pugh method is also provided in Chap. 8, David G. Ullman, The Mechanical Design Process, 3rd ed., McGraw-Hill, 2003.
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition
I. Basics 1. Introduction to Mechanical Engineering Design
© The McGraw−Hill^15 Companies, 2008
Introduction to Mechanical Engineering Design 9
as Aries, AutoCAD, CadKey, I-Deas, Unigraphics, Solid Works, and ProEngineer, to name a few. The term computer-aided engineering (CAE) generally applies to all computer- related engineering applications. With this definition, CAD can be considered as a sub- set of CAE. Some computer software packages perform specific engineering analysis and/or simulation tasks that assist the designer, but they are not considered a tool for the creation of the design that CAD is. Such software fits into two categories: engineering- based and non-engineering-specific. Some examples of engineering-based software for mechanical engineering applications—software that might also be integrated within a CAD system—include finite-element analysis (FEA) programs for analysis of stress and deflection (see Chap. 19), vibration, and heat transfer (e.g., Algor, ANSYS, and MSC/NASTRAN); computational fluid dynamics (CFD) programs for fluid-flow analy- sis and simulation (e.g., CFD++, FIDAP, and Fluent); and programs for simulation of dynamic force and motion in mechanisms (e.g., ADAMS, DADS, and Working Model). Examples of non-engineering-specific computer-aided applications include soft- ware for word processing, spreadsheet software (e.g., Excel, Lotus, and Quattro-Pro), and mathematical solvers (e.g., Maple, MathCad, Matlab, Mathematica, and TKsolver). Your instructor is the best source of information about programs that may be available to you and can recommend those that are useful for specific tasks. One caution, however: Computer software is no substitute for the human thought process. You are the driver here; the computer is the vehicle to assist you on your journey to a solution. Numbers generated by a computer can be far from the truth if you entered incorrect input, if you misinterpreted the application or the output of the program, if the program contained bugs, etc. It is your responsibility to assure the validity of the results, so be careful to check the application and results carefully, perform benchmark testing by submitting problems with known solu- tions, and monitor the software company and user-group newsletters.
Acquiring Technical Information We currently live in what is referred to as the information age, where information is gen- erated at an astounding pace. It is difficult, but extremely important, to keep abreast of past and current developments in one’s field of study and occupation. The reference in Footnote 2 provides an excellent description of the informational resources available and is highly recommended reading for the serious design engineer. Some sources of information are:
(^3) Some helpful Web resources, to name a few, include www.globalspec.com, www.engnetglobal.com, www.efunda.com, www.thomasnet.com, and www.uspto.gov.
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition
I. Basics 1. Introduction to Mechanical Engineering Design
(^16) © The McGraw−Hill Companies, 2008
10 Mechanical Engineering Design
This list is not complete. The reader is urged to explore the various sources of information on a regular basis and keep records of the knowledge gained.
1–5 The Design Engineer’s Professional Responsibilities In general, the design engineer is required to satisfy the needs of customers (man- agement, clients, consumers, etc.) and is expected to do so in a competent, responsi- ble, ethical, and professional manner. Much of engineering course work and practical experience focuses on competence, but when does one begin to develop engineering responsibility and professionalism? To start on the road to success, you should start to develop these characteristics early in your educational program. You need to cul- tivate your professional work ethic and process skills before graduation, so that when you begin your formal engineering career, you will be prepared to meet the challenges. It is not obvious to some students, but communication skills play a large role here, and it is the wise student who continuously works to improve these skills— even if it is not a direct requirement of a course assignment! Success in engineering (achieve- ments, promotions, raises, etc.) may in large part be due to competence but if you can- not communicate your ideas clearly and concisely, your technical proficiency may be compromised. You can start to develop your communication skills by keeping a neat and clear journal/logbook of your activities, entering dated entries frequently. (Many companies require their engineers to keep a journal for patent and liability concerns.) Separate journals should be used for each design project (or course subject). When starting a project or problem, in the definition stage, make journal entries quite frequently. Others, as well as yourself, may later question why you made certain decisions. Good chrono- logical records will make it easier to explain your decisions at a later date. Many engineering students see themselves after graduation as practicing engineers designing, developing, and analyzing products and processes and consider the need of good communication skills, either oral or writing, as secondary. This is far from the truth. Most practicing engineers spend a good deal of time communicating with others, writing proposals and technical reports, and giving presentations and interacting with engineering and nonengineering support personnel. You have the time now to sharpen your communication skills. When given an assignment to write or make any presenta- tion, technical or nontechnical, accept it enthusiastically, and work on improving your communication skills. It will be time well spent to learn the skills now rather than on the job. When you are working on a design problem, it is important that you develop a systematic approach. Careful attention to the following action steps will help you to organize your solution processing technique.