Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Resolução Cap 10- Método dos Trabalhos Virtuais Mecânica Beer, Exercícios de Mecânica

Esta é a Resolução Cap 10- Método dos Trabalhos Virtuais Mecânica Beer

Tipologia: Exercícios

2020
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 10/09/2020

lalabritto
lalabritto 🇧🇷

4.9

(8)

13 documentos

1 / 134

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
PROBLEM 10.1
Determine the vertical force P which must be applied at G to maintain the
equilibrium of the linkage.
SOLUTION
Assuming
A
y
δ
it follows
120 1.5
80
CAA
yyy
δ
δδ
==
1.5
E
CA
yy y
δ
δδ
==
()
180 31.5 4.5
60
DA AA
yy yy
δ
δδδ
== =
()
100 100 1.5 2.5
60 60
GA AA
yy yy
δ
δδδ
== =
Then, by Virtual Work
(
)
(
)
0: 300 N 100 N 0
ADG
UyyPy
δδδδ
=−+=
(
)
(
)
300 100 4.5 2.5 0
AAA
yyPy
δδδ
+=
300 450 2.5 0P
+=
60 NP
=
+ 60 N
=
P
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64
Discount

Em oferta

Pré-visualização parcial do texto

Baixe Resolução Cap 10- Método dos Trabalhos Virtuais Mecânica Beer e outras Exercícios em PDF para Mecânica, somente na Docsity!

Determine the vertical force P which must be applied at G to maintain the equilibrium of the linkage.

SOLUTION

Assuming

δ y A

it follows

120

C (^) 80 A A δ y = δ y = δ y

δ y (^) E = δ yC = 1.5δ yA

D 60 A A A

δ y = δ y = δ y = δ y

G 60 A 60 A A

δ y = δ y = δ y = δ y

Then, by Virtual Work

δ U = 0: ( 300 N ) δ yA − ( 100 N )δ yD + P δ yG = 0

300 δ y A − 100 4.5 ( δ y A ) + P ( 2.5δ yA )= 0

300 − 450 + 2.5 P = 0

P = + 60 N P =60 N W

Determine the vertical force P which must be applied at G to maintain the equilibrium of the linkage.

SOLUTION

Link ABC

Link DEFG

Assume

δθclockwise Then for point C

δ xC = ( 5 δθ)in.

and for point D

δ xD = δ xC = ( 5 δθ )in.

And for link DEFG

δ xD = 15 δφ

∴ 5 δ θ = 15 δφ

or

δφ = δθ

Then

4 2 2 in. G 3 δ δφ δθ

Now δ yG = δ G cos 45°

2 cos 45 3

δθ

in. 3

δθ

Then, by Virtual Work.

δ U = 0: ( 80 lb in.⋅ ) δθ− ( 40 lb ) δ xE ( in.) + P δ yG ( in.) = 0

δθ δθ P δθ

or P =40 lb W

Determine the couple M which must be applied to member DEFG to maintain the equilibrium of the linkage.

SOLUTION

Assuming

δ y A

it follows

120

C (^) 80 A A δ y = δ y = δ y

δ y (^) E = δ yC = 1.5δ yA

D 60 A A A

δ y = δ y = δ y = δ y

E A A

y y y δ δ δφ= = = δ

Then, by Virtual Work:

δ U = 0: ( 300 N ) δ yA − ( 100 N )δ yD + M δφ= 0

δ y (^) A δ y (^) A M δ yA

− + M =

M = + 6000 N mm⋅ M = 6.00 N m⋅ W

An unstretched spring of constant 4 lb/in. is attached to pins at points C and I as shown. The pin at B is attached to member BDE and can slide freely along the slot in the fixed plate. Determine the force in the spring and the horizontal displacement of point H when a 20-lb horizontal force directed to the right is applied ( a ) at point G , ( b ) at points G and H.

SOLUTION

First note:

xG = 3 xD ⇒ δ xG = 3 δ xD

xH = 4 xD ⇒ δ xH = 4 δ xD

xI = 5 xD ⇒ δ xI = 5 δ xD

( a ) Virtual Work δ U = 0: FG δ xGFSP δ xI = 0

or ( 20 lb )( 3 δ xD ) − FSP ( 5 δ xD )= 0

thus, FSP = 12.00 lb T W

Now FSP = kxI

or 12.00 lb = ( 4 lb/in.) ∆ xI

Thus, ∆ x (^) I =3 in.

and

δ x D = δ xH = δ xI

∴ ∆ xH = ∆ xI

3 in. 5

= or ∆ x (^) H = 2.40 in. W

( b ) Virtual Work: δ U = 0: FG δ xG + FH δ xHFSP δ xI = 0

or ( 20 lb )( 3 δ xD ) + ( 20 lb) ( 4 δ xD ) − FSP ( 5 δ xD )= 0

thus, FSP = 28.0 lb T W

Now FSP = kxI

or 28.0 lb = ( 4 lb/in.) ∆ xI

Thus, ∆ x (^) I =7 in.

From part ( a )

x (^) H = ∆ xI

7 in. 5

= or ∆ x (^) H = 5.60 in. W

PROBLEM 10.6 CONTINUED

Now FSP = kxI

or 12.00 lb = ( 4 lb/in.) ∆ xI

Thus, ∆ x (^) I =3 in.

From part ( a )

x (^) H = ∆ xI

3 in. 5

= or ∆ x (^) H = 2.40 in. W

Knowing that the maximum friction force exerted by the bottle on the cork is 300 N, determine ( a ) the force P which must be applied to the corkscrew to open the bottle, ( b ) the maximum force exerted by the base of the corkscrew on the top of the bottle.

SOLUTION

From sketch

yA = 4 yC

Thus, δ yA = 4 δ yC

( a ) Virtual Work:

δ U = 0: P δ y (^) AF δ yC = 0

P = F

300 N: 300 N 75 N

F = P = =

P = 75.0 N W

( b ) Free body: Corkscrew

Σ F (^) y = 0: R + PF = 0

R + 75 N − 300 N = 0

R = 225 N W

The mechanism shown is acted upon by the force P ; derive an expression for the magnitude of the force Q required for equilibrium.

SOLUTION

Virtual Work:

Have x (^) A =2 sin l θ

δ x (^) A = 2 cos l θ δθ

and yF =3 cos l θ

δ yF = − 3 sin l θ δθ

Virtual Work: δ U = 0: Q δ x (^) A + P δ yF = 0

Q ( 2 cos l θ δθ) + P ( −3 sin l θ δθ)= 0

tan 2

Q = P θW

Knowing that the line of action of the force Q passes through point C , derive an expression for the magnitude of Q required to maintain equilibrium

SOLUTION

Have yA = 2 cos l θ ; δ y (^) A = −2 sin l θ δθ

2 sin ; ( ) cos

CD l CD l θ θ = δ = δθ

Virtual Work:

δ U = 0: − P δ y A − Q δ ( CD )= 0

( 2 sin^ ) cos^0

P l Q l θ θ δθ δθ

sin 2 cos /

Q P

θ θ

= W

The slender rod AB is attached to a collar A and rests on a small wheel at C. Neglecting the radius of the wheel and the effect of friction, derive an expression for the magnitude of the force Q required to maintain the equilibrium of the rod.

SOLUTION

For ∆ AA C ′ :

A C ′^ = a tan θ

yA = − ( A C ′ ) = − a tan θ

A cos 2

a δ y δθ θ

For ∆ CC B ′ :

BC ′^ = l sin θ− A C

= l sin θ − a tan θ

yB = BC ′= l sin θ− a tan θ

B cos^ cos 2

a δ y l θδθ δθ θ

Virtual Work:

δ U = 0: Q δ y (^) AP δ yB = 0

cos^2 cos^ cos^20

a a Q δθ P l θ δθ θ θ

cos 2 cos cos^2

a a Q P l θ θ θ

  =^  − 

Q P l cos^3 a

θ

W

A double scissor lift table is used to raise a 1000-lb machine component. The table consists of a platform and two identical linkages on which hydraulic cylinders exert equal forces. (Only one linkage and one cylinder are shown.) Each member of the linkage is of length 24 in., and pins C and G are at the midpoints of their respective members. The hydraulic cylinder is pinned at A to the base of the table and at F which is 6 in. from E. If the component is placed on the table so that half of its weight is supported by the system shown, determine the force exerted by each cylinder when θ = 30 .°

SOLUTION

First note y (^) H = 2 L sin θ L =24 in. (length of link)

Then δ yH = 2 L cos θδθ

Now

2 2 3 5 cos sin 4 4

d (^) AF L θ L θ

(^1 9) 16sin 2 4

= L + θ

Then

2

2 16sin cos (^4 2 9) 16sin AF

L

d

θ θ δ δθ θ

2

sin cos 4 9 16sin

L θ θ δθ θ

=

Virtual Work:

cyl

δ U F δ d (^) AF W δ yH

or cyl ( )( )

2

sin cos 4 500 lb 2 cos 0 9 16sin

F L L

θ θ δθ θδθ θ

  −^ =

and (^) cyl 2

sin 250 lb 9 16sin

F θ θ

=

Finally, (^) cyl 2

sin 30 250 lb 9 16sin 30

F ° =

  • °

or F cyl (^) = 1803 lbW

Derive an expression for the magnitude of the couple M required to maintain the equilibrium of the linkage shown.

SOLUTION

ABC : y (^) B = a sin θ ⇒ δ yB = a cosθδθ

yC = 2 a sin θ ⇒ δ yC = 2 a cosθδθ

CDE : Note that as ABC rotates counterclockwise, CDE rotates clockwise while it moves to the left.

Then δ yC = a δφ

or 2 a cos θδθ = a δφ

or δφ=2 cosθδθ

Virtual Work:

δ U = 0: − P δ yBP δ yC + M δφ= 0

− P a ( cos θδθ) − P ( 2 a cos θδθ) + M ( 2cos θδθ)= 0

or

M = Pa W

Derive an expression for the magnitude of the couple M required to maintain the equilibrium of the linkage shown.

SOLUTION

Have

xB = l cos θ

δ xB = − l sin θδθ (1)

yC = l sin θ

δ yC = l cos θδθ

Now

δ x B = l δθ

Substituting from Equation (1)

1 sin 2

l θδθ = l δφ

or δφ = −2sinθδθ

Virtual Work:

δ U = 0: M δϕ + P δ yC = 0

M ( −2sin θδθ) + P l ( cos θδθ)= 0

or 1 cos 2 sin

M Pl θ θ

2 tan

Pl M θ

= W

The pin at C is attached to member BCD and can slide along a slot cut in the fixed plate shown. Neglecting the effect of friction, derive an expression for the magnitude of the couple M required to maintain equilibrium when the force P which acts at D is directed ( a ) as shown, ( b ) vertically downward, ( c ) horizontally to the right.

SOLUTION

Have xD = l cos θ

δ xD = − l sin θδθ

yD = 3 sin l θ

δ y (^) D = 3 cos l θδθ

Virtual Work: δ U = 0: M δθ− ( P cos β δ) xD − ( P sin β δ) yD = 0

M δθ− ( P cos β)( − l sin θδθ) − ( P sin β)( 3 cos l θδθ)= 0

M = Pl ( 3sin β cos θ − cos β sinθ) (1)

( a ) For P directed along BCD , β =θ

Equation (1): M = Pl ( 3sin θ cos θ −cos θ sinθ)

M = Pl ( 2sin θ cosθ) M = Pl sin 2 θW

( b ) For P directed , β = 90 °

Equation (1): M = Pl ( 3sin 90 cos° θ − cos90 sin° θ)

M = 3 Pl cos θW

( c ) For P directed , β = 180 °

Equation (1): M = Pl ( 3sin180 cos° θ − cos180 sin° θ)

M = Pl sin θW

A 1-kip force P is applied as shown to the piston of the engine system. Knowing that AB = 2.5 in.and BC = 10 in., determine the couple M required to maintain the equilibrium of the system when ( a ) θ = 30 ,° ( b ) θ = 150 .°

SOLUTION

Analysis of the geometry:

Law of Sines

sin sin AB BC

φ θ

sin sin

AB

BC

φ = θ (1)

Now

xC = AB (^) cos θ+ BC cos φ

δ xC = − AB sin θδθ− BC sinφδφ (2)

Now, from Equation (1) cos cos

AB

BC

φδφ= θδθ

or cos cos

AB

BC

θ δφ δθ φ

From Equation (2)

cos sin sin cos C

AB

x AB BC BC

θ δ θδθ φ δθ φ

or ( sin cos sin cos )

cos C

AB

δ x θ φ φ θ δθ φ

Then

sin( )

cos C

AB x

θ φ δ δθ φ

= −