Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

CCE 401: Sistemas de Comunicação - Resolução da Tarefa 5, Exercícios de Comunicação

Principios de COmunicação exercicios resolvidos

Tipologia: Exercícios

2020

Compartilhado em 21/11/2020

karen-muller-12
karen-muller-12 🇧🇷

4.3

(13)

18 documentos

1 / 3

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
CCE 401: Communication Systems Spring 2017-2018
Assignment 5 (Solution)
Due: 2018
Instructor: Dr. Mustafa El-Halabi
Solution 1.Instantaneous Frequency.
We can write s(t) as
s(t) = cos(200πt 5 sin(2πt ))
where θ(t) = 200πt 5 sin(2πt ). The instantaneous frequency is given by
fi(t) = 1
2π
(t)
dt = 100 5 cos(2πt)
Solution 2.Two Tones.
Let m1(t) = a1cos(2πf1t) and m2(t) = a2cos(2πf2t) be the two tones. The average of m1(t) and m2(t) are
respectively P1=a2
1
2and P2=a2
2
2. Since P1= 49P2, then a2
1= 49a2
2, hence
a1=±7a2
The modulation indices for m1(t) and m2(t) are respectively β1and β2, given by β1=kfa1
f1and β2=kfa2
f2.
Since β1= 2β2, then a1
f1
= 2a2
f2f2=2
7f1(1)
Using Carson’s rule, the bandwidths of the FM modulated signal using m1(t) and using m2(t) are respectively,
Bw1= 2(β1+ 1)f1=Wβ1=W
2f11
Bw2= 2(β2+ 1)f2=Wβ2=W
2f21
Since β1= 2β2, then 2W
2f2W
2f1
= 1 (2)
Replacing Equation. (??) in Equation. (??), we get
f1= 3W, f2=6
7W
Solution 3.Bandwidth of Angle-Modulated Signal.
u(t) = 10 cos(2 ×108πt + 200 cos(2000πt ))
The instantaneous frequency is
fi(t) = 1
2π
dt = 108+ 2 ×105sin(2000π t)fi(t)fc= 2 ×105sin(2000πt )f= 2 ×105Hz
Since fm= 1000 Hz , then using Carson’s rule, the bandwidth os the angle-modulated signal is
Bw= 2(∆f+fm) = 2(201000) = 402 K Hz
1
pf3

Pré-visualização parcial do texto

Baixe CCE 401: Sistemas de Comunicação - Resolução da Tarefa 5 e outras Exercícios em PDF para Comunicação, somente na Docsity!

CCE 401: Communication Systems Spring 2017-

Assignment 5 (Solution)

Due: 2018 Instructor: Dr. Mustafa El-Halabi

Solution 1. Instantaneous Frequency. We can write s(t) as s(t) = cos(200πt − 5 sin(2πt))

where θ(t) = 200πt − 5 sin(2πt). The instantaneous frequency is given by

fi (t) =

2 π

dθ(t) dt = 100 − 5 cos(2πt)

Solution 2. Two Tones. Let m 1 (t) = a 1 cos(2πf 1 t) and m 2 (t) = a 2 cos(2πf 2 t) be the two tones. The average of m 1 (t) and m 2 (t) are respectively P 1 = a

(^21) 2 and^ P^2 =^

a^22

  1. Since^ P^1 = 49P^2 , then^ a (^21) = 49a (^22) , hence

a 1 = ± 7 a 2

The modulation indices for m 1 (t) and m 2 (t) are respectively β 1 and β 2 , given by β 1 = kf f^ a 1 1 and β 2 = kf f^ a 2 2. Since β 1 = 2β 2 , then a 1 f 1

a 2 f 2 ⇒ f 2 =

f 1 (1)

Using Carson’s rule, the bandwidths of the FM modulated signal using m 1 (t) and using m 2 (t) are respectively,

Bw 1 = 2(β 1 + 1)f 1 = W ⇒ β 1 =

W

2 f 1 −^1

Bw 2 = 2(β 2 + 1)f 2 = W ⇒ β 2 =

W

2 f 2

Since β 1 = 2β 2 , then 2 W 2 f 2

W

2 f 1

Replacing Equation. (??) in Equation. (??), we get

f 1 = 3W, f 2 =

W

Solution 3.Bandwidth of Angle-Modulated Signal.

u(t) = 10 cos(2 × 108 πt + 200 cos(2000πt))

The instantaneous frequency is

fi (t) =

2 π

dθ dt = 10^8 + 2 × 105 sin(2000πt) ⇒ fi (t) − fc = 2 × 105 sin(2000πt) ⇒ ∆f = 2 × 105 Hz

Since fm = 1000 Hz, then using Carson’s rule, the bandwidth os the angle-modulated signal is

Bw = 2(∆f + fm) = 2(201000) = 402 KHz

Solution 4.Modulation Index of FM Signal. The modulation index is given by

β = max |m(t)| × k fm

We can write m(t) as m(t) = A

2 cos

( (^) π 4 − 2 πfmt

The maximum of m(t) is max |m(t)| = A

  1. Hence,

β =

A

2 k fm

Solution 5.Power in FM Signal. The FM modulated signal can be written as

s(t) = 100 cos(2π × 108 t + 2 sin(20, 000 πt))

where β = ∆fmf = 2010 ×^104 3 = 2. The power of the FM signal si A 22 = 5000 W. Hence, 10% of the power is 500 W. We can form the following table

n f Amplitude = AJn(β) V P ow er = A 22 J n^2 (β) (W ) − 3 100 MHz − 30 KHz AJ− 3 (2) = − 12. 9 83. 2 − 2 100 MHz − 20 KHz AJ− 2 (2) = 35. 3 623 − 1 100 MHz − 10 KHz AJ− 1 (2) = − 57. 7 1664. 645 0 100 MHz AJ 0 (2) = 22. 4 250. 88 +1 100 MHz + 10 KHz AJ 1 (2) = 57. 7 1664. 645 +2 100 MHz + 20 KHz AJ 2 (2) = 35. 5 623 +3 100 MHz + 30 KHz AJ 3 (2) = 12. 9 83. 2

From the table, the frequency components which has a power at least 10% of the unmodulated carrier power are fc ± fm and fc ± 2 fm.

Solution 6. Frequency Deviation

u(t) = 2 cos(2πfc t − 20 cos(1000πt) − 10 cos(2000πt)) = 2 cos

2 πfc t + 2πkf

∫ (^) t

0

m(τ )dτ

By inspecting, we get

2 πkf m(t) = −20(− 1000 π) sin(1000πt) − 10(− 2000 π) sin(2000πt) Since kf = 10^4 ,then we get m(t) = sin(1000πt) + sin(2000πt)

  1. Find the frequency deviation. Since fi (t) − fc = (^21) πdφ dt(t )= 10^4 sin(1000πt) + 10^4 sin(2000πt), hence

∆f = 10^4 max

∣ sin(1000πt) + sin(2000πt)

Let 1000πt , x. Since the maximum of sin(x) + sin(2x) is roughly 1.76, then

∆f = 10^4 × 1 .76 = 17600 Hz