Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

IFSC - Fisiologia Vegetal, Notas de estudo de Fisiologia vegetal

IFSC - Fisiologia Vegetal

Tipologia: Notas de estudo

2014

Compartilhado em 17/06/2014

arturius-melaheli-7
arturius-melaheli-7 🇧🇷

3 documentos

1 / 37

Toggle sidebar

Esta página não é visível na pré-visualização

Não perca as partes importantes!

bg1
UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE FÍSICA DE SÃO CARLOS
Licenciatura em Ciências Exatas
Introdução à Biologia Vegetal
São Carlos - 2001
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25

Pré-visualização parcial do texto

Baixe IFSC - Fisiologia Vegetal e outras Notas de estudo em PDF para Fisiologia vegetal, somente na Docsity!

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE FÍSICA DE SÃO CARLOS

Licenciatura em Ciências Exatas

Introdução à Biologia Vegetal

São Carlos - 2001

Sumário

  • 10 O movimento da água e dos solutos nas plantas __________________________
    • 10.1 Absorção pelas raízes ___________________________________________
      • 10.1.1 Fatores que afetam a absorção __________________________________
      • 10.1.2 Pressão da raiz ______________________________________________
    • 10.2 Transporte da água _____________________________________________
      • 10.2.1 O mecanismo de coesão-tensão _________________________________
      • 10.2.2 Regulação da transpiração _____________________________________
    • 10.3 Translocação no floema _________________________________________
      • 10.3.1 O mecanismo do fluxo por pressão ______________________________
  • 11 Solos e nutrição das plantas __________________________________________
    • 11.1 Composição do solo _____________________________________________
      • 11.1.1 Elementos minerais___________________________________________
    • 11.2 Funções dos minerais nas plantas _________________________________
      • 11.2.1 Macronutrientes _____________________________________________
      • 11.2.2 Micronutrientes _____________________________________________
  • 12 Hormônios vegetais _________________________________________________
    • 12.1 Auxinas_______________________________________________________
    • 12.2 Giberelinas ___________________________________________________
    • 12.3 Citocininas ___________________________________________________
    • 12.4 Etileno ______________________________________________________
    • 12.5 Ácido Abscísico _______________________________________________
  • 13 Crescimento e Desenvolvimento ______________________________________
    • 13.1 Mudanças no turgor __________________________________________
    • 13.2 O Relógio Biológico ____________________________________________
    • 13.3 Tropismos____________________________________________________
    • 13.4 Fotoperiodismo _______________________________________________
    • 13.5 Dormência ___________________________________________________
  • 14 Respiração e Fotossíntese ___________________________________________
    • 14.1 Fatores que afetam a taxa de respiração ___________________________
    • 14.2 Fotossíntese __________________________________________________
    • 14.3 Fotossíntese e Respiração _______________________________________
  • Bibliografia_________________________________________________________
  • Glossário ___________________________________________________________
  • Questões para revisão_________________________________________________

10.1 Absorção pelas raízes O sistema radicular serve para fixar a planta ao solo e, sobretudo, para satisfazer as exigências hídricas das folhas. Quase toda a água que a planta recolhe do solo penetra através da epiderme da raiz, em grande parte na região dos pêlos radiculares. A partir dos pêlos radiculares, a água move-se através do córtex, da endoderme e do periciclo, penetrando no xilema primário (figura 10.1). A água, uma vez nos elementos condutores do xilema, ascende através da raiz e do caule e penetra nas folhas. Figura 10.1: Esquema de corte de raiz, indicando o movimento de água do solo para o xilema. A – através das paredes celulares (apoplasto); B – através do protoplasma (simplasto). As áreas escuras entre as células da endoderme constituem as estrias de Caspari, que são áreas suberizadas, impermeáveis à água. De modo geral, as raízes entram em contato com a água através de seu crescimento. As raízes de algumas espécies penetram no solo atingindo grandes distâncias; por exemplo, encontra-se freqüentemente um sistema radicular estreito e profundo nas plantas que crescem em dunas de praia. Contudo, na maioria das espécies, a maior extensão das raízes é lateral. Em conseqüência, se uma árvore for regada na base, a maior parte da água não será absorvida. Geralmente, pode-se esperar encontrar a maior área de crescimento radicular logo abaixo das folhas mais externas. 10.1.1 Fatores que afetam a absorção A absorção salina depende de uma série de fatores, alguns internos, ligados à própria planta ou tecido considerado, e outros externos:


aeração : o oxigênio do ar é necessário para a respiração das raízes, por esta razão é necessário se manterem no solo condições que facilitem a penetração, o movimento e o armazenamento do ar. temperatura : entre os 0 e 30 C aumenta a quantidade de íons absorvida e também a atividade metabólica. umidade : a absorção dos sais não se dá com a mesma velocidade e os elementos não penetram na célula com a mesma velocidade; como regra geral é obedecida a seguinte ordem decrescente: ânions NO 3 -^ > Cl-^ > SO 4 -^2 > H 2 PO 4 - cátions NH 4 +^ > K+^ > Mg+2^ > Ca+ presença de outros íons : podem ocorrer três situações: antagonismo (a presença de um íon diminui a absorção de um segundo), inibição (diminuição reversível ou não da absorção de um íon pela presença de outro), sinergismo (aumento na absorção de um íon pela presença de outro). presença de cálcio : o cálcio mantém a integridade funcional das membranas, estimulando a absorção de outros cátions. estado iônico interno : se todos os sítios da raiz disponíveis para a “troca” inicial estiverem tomados, fica diminuída a possibilidade de absorção, o mesmo ocorre se o suco vacuolar estiver saturado. potencialidade genética : a capacidade de absorção pode variar com a espécie e a variedade da planta. pH : os valores baixos de pH (inferiores a 7,0) favorecem a absorção de ânions, enquanto os valores mais próximos da neutralidade ajudam a de cátions. A corrente de transpiração, além de fornecer água às folhas da planta, também distribui íons minerais para o caule. Após serem absorvidos pelas células externas da raiz, os íons são transferidos para as células corticais e, finalmente, para o xilema. Quando a transpiração está ocorrendo, os íons são transportados rapidamente através de toda a planta. 10.1.2 Pressão da raiz Quando a transpiração é muito lenta ou ausente, como à noite, as células da raiz podem secretar íons dentro do xilema. Como o tecido vascular da raiz é circundado pela endoderme, que é uma camada de células com paredes impermeáveis à água e aos íons, os íons não tendem a escapar do xilema. Em conseqüência, o potencial de água do xilema torna-se mais negativo, e a água penetra no xilema por osmose através das células circundantes. Deste modo desenvolve-se uma pressão positiva, denominada pressão da raiz , que força tanto a água quanto os íons dissolvidos para cima no xilema. Um dos efeitos da pressão de raiz é um processo denominado gutação. Formam-se gotículas de água nos ápices de folhas de gramíneas, semelhantes ao orvalho, mas estas provém do interior da folha. Exsudam através de poros especiais denominados hidatódios, que se encontram localizados nos ápices e nas margens das folhas. A água da gutação é literalmente forçada para fora das folhas pela pressão radicular. A pressão radicular se apresenta menos eficaz durante o dia, quando o movimento da água através da planta é máximo. A pressão radicular deve ser considerada, em parte, como um meio auxiliar de mover a água no caule sob condições especiais.


que diminuem a perda de água e, ao mesmo tempo, melhoram a captação de dióxido de carbono. a) A cutícula e os estômatos As plantas encontram-se recobertas por uma cutícula, que torna a superfície da folha em grande parte impermeável à água e ao gás carbônico. Uma pequena fração é perdida através das lenticelas da casca. A maior quantidade de água transpirada por uma planta superior é perdida através dos estômatos. A transpiração estomática envolve dois processos: 1) evaporação da água das superfícies das paredes celulares que estão em contato com os espaços intercelulares ou espaços aeríferos do mesófilo, e 2) difusão do vapor d’água dos espaços intercelulares para a atmosfera por intermédio dos estômatos. Os estômatos comunicam-se com uma estrutura alveolar de espaços cheios de ar dentro da folha, que circunda as células de paredes delgadas do mesófilo. O ar desses espaços, os quais formam 15 a 20 % do volume total da folha, encontra-se saturado de vapor d’água que se evaporou das superfícies úmidas das células do mesófilo. Embora as aberturas estomáticas ocupem apenas cerca de 1 % da superfície total da folha, mais de 90% da água transpirada pela planta são perdidos através dos estômatos. O fechamento dos estômatos não apenas evita a perda de vapor d’água da folha, como também previne naturalmente a entrada de dióxido de carbono na folha. b) O mecanismo dos movimentos estomáticos Os estômatos se abrem quando as células-guarda se apresentam mais túrgidas que as células circundantes, e se fecham quando as células-guarda se encontram menos túrgidas. A turgência é mantida ou perdida devido ao movimento osmótico passivo da água para dentro e para fora das células ao longo de um gradiente de concentração de solutos que é estabelecido ativamente. c) Fatores que afetam os movimentos estomáticos Vários fatores ambientais afetam a abertura e o fechamento dos estômatos, sendo a perda de água o principal fator. Quando a turgescência de uma folha cai abaixo de um certo ponto crítico, que varia de acordo com as diferentes espécies, a abertura estomática torna-se menor. Além da perda de água existem outros fatores como a concentração de dióxido de carbono, luz e temperatura. Na maioria das espécies, um aumento na concentração de gás carbônico nos espaços intercelulares provoca o fechamento dos estômatos. Assim, um aumento na temperatura resulta num incremento da respiração e num aumento concomitante na concentração de dióxido de carbono intercelular, que pode constituir a causa do fechamento do estômato. O estômato da maioria das plantas abrem-se durante o dia e fecham-se a noite, mas muitas plantas de regiões áridas abrem seus estômatos somente a noite como forma de economizar água, já que as temperaturas são mais amenas. Tais plantas têm uma forma especializada de fotossíntese, chamada de fotossíntese CAM ( de metabolismo ácido crassuláceo), pois o CO 2 capturado a noite é “armazenado” na forma ácida para a fotossíntese que será realizada durante o dia.


d) Outros fatores que afetam a intensidade da transpiração Um dos mais importantes é a temperatura. A velocidade da evaporação da água duplica sempre que a temperatura se eleva cerca de 10 C. No entanto, como a evaporação esfria a superfície da folha, sua temperatura não se eleva tão rapidamente quanto a do ar circundante. Os estômatos se fecham quando a temperatura ultrapassa 30 a 35C. A umidade é também importante. A água perde-se muito mais lentamente para o ar já sobrecarregado de vapor d’água. 10.3 Translocação no floema A seiva de um tubo crivado contém 10 a 25 % de matéria seca, 90% ou mais sendo açúcar, principalmente sacarose, na maioria das plantas. Verifica-se também a presença de baixas concentrações (menos de 1 %) de aminoácidos e outras substâncias nitrogenadas. 10.3.1 O mecanismo do fluxo por pressão De acordo com a hipótese do fluxo por pressão, as substâncias assimiladas deslocam-se através dos tubos crivados, ao longo de gradientes de concentração, entre as fontes dos produtos assimilados e os locais de sua utilização. As fontes são os locais onde as substâncias nutritivas estão disponíveis para o transporte, tais como folhas fotossintetizantes ou regiões de armazenamento. Exemplos locais de utilização são as regiões de tecidos em crescimento e diferenciação ou regiões de armazenamento. O açúcar fabricado nas células do mesófilo da folha é ativamente secretado ou “bombeado” para os tubos crivados das nervuras por células parenquimatosas vizinhas, tais como células companheiras. Essa secreção diminui o potencial hídrico no tubo crivado e faz com que a água se desloque do xilema para o interior do tubo crivado. Com o movimento da água no tubo crivado, o açúcar é transportado passivamente até o ápice da raiz em crescimento, onde o açúcar e removido do tubo através de gasto de energia pelas células parenquimatosas vizinhas. Esse processo resulta num aumento do potencial de água, no tubo crivado, e na saída subsequente de água do tubo, no local de utilização. O mecanismo do fluxo por pressão depende de diferenças no potencial de água em ambos os lados das membranas diferencialmente permeáveis (as membranas plasmáticas), e entre as fontes e os locais de utilização. Essas diferenças no potencial de água resultam em osmose e fornecem a força propulsora para o mecanismo do fluxo por pressão.


Fósforo: compõe os ácidos nucleicos e compostos de “alta” energia como o ATP entre outros. Forma sais insolúveis que a planta é incapaz de absorver. Absorvido sob a forma de HPO 42 -^ ou H 2 PO 4. Magnésio: faz parte da estrutura da clorofila e também importante na ativação de muitas enzimas. É absorvido na forma iônica Mg2+. Potássio: é cofator de muitas enzimas. Participa na translocação dos açúcares no floema e na abertura e fechamento dos estômatos. É absorvido sob a forma K+. Enxofre: Aparece na composição de certos aminoácidos e, conseqüentemente, proteínas. Assimilado como SO 42 - Cálcio: atua no transporte de íons na membrana plasmática das células; cofator enzimático. 11.2.2 Micronutrientes Ferro: síntese da clorofila, citocromos e ferredocina. Formas assimiláveis: Fe2+^ e Fe3+. Cobre: catalisador de reações de óxido-redução. Manganês: catalisador a nível de fotossíntese e ciclo de Krebs. Zinco: participação na síntese das auxinas e enzimas. Molibdênio: participa na absorção do enxofre e fixação de N 2. Boro: atua nos processos de traslocação. Cloro: Osmose, equilíbrio iônico, essencial na fotossíntese. Absorvido sob a forma iônica C l

  • . Os minerais tornam-se disponíveis na solução edáfica (do solo) para as plantas sob a forma de íons. Estas utilizam a energia metabólica para concentrar os íons de que necessitam. Alguns dos íons são captados por processos de transporte ativo, ao passo que outros fluem aparentemente de modo passivo, devido aos gradientes eletroquímicos criados pelos íons que se movem ativamente e suas bombas. Numa comunidade natural, os elementos são retirados do solo pelas plantas e, a seguir, retornam a ele quando as plantas ou animais que delas se alimentam morrem. As associações do tipo micorriza entre fungos e raízes de plantas são importantes no funcionamento deste sistema e na mediação direta da captação dos íons. Sob condições agrícolas, o nitrogênio, o fósforo e o potássio tornam-se, mais comumente, fatores limitantes para o crescimento vegetal; portanto, estes elementos são comumente fornecidos ao solo nos fertilizantes.

12 Hormônios vegetais

Em plantas, como em animais, hormônios regulam o desenvolvimento e o crescimento. Os hormônios vegetais são compostos orgânicos produzidos em uma parte da planta e transportados para outra, onde eles irão induzir respostas fisiológicas. Os hormônios são efetivos em quantidades extremamente pequenas. Em plantas, seu estudo é cada vez mais difícil, pois cada fitormônio (hormônio vegetal) provoca muitas respostas diferentes e os efeitos de diferentes hormônios se sobrepõem, dificultando a determinação de qual deles é o causador primário de uma resposta particular. Para complicar ainda mais, os fitormônios podem ser estimulantes a uma determinada concentração e inibidores em concentrações diferentes. Cinco tipos de hormônios vegetais foram identificados: auxinas , giberelinas , citocininas , etileno e ácido abscísico. Juntos, eles controlam o crescimento e desenvolvimento vegetal em todos os estágios de sua vida. 12.1 Auxinas Embora Darwin seja mais conhecido por ter desenvolvido o conceito de Seleção Natural para explicar a evolução, ele foi um naturalista privilegiado que fez experimentos com muitas plantas e animais. Darwin e seu filho eram interessados pelo fototropismo, o crescimento das plantas influenciado pela luz. Num de seus experimentos, eles expuseram coleoptiles (bainha que recobre o meristema apical e primórdios foliares do embrião das gramíneas) de uma gramínea à luz unidirecional e elas se inclinaram em direção à luz, sendo que a curvatura ocorreu perto mas não no ápice da coleoptile (figura 12.1). Vários experimentos foram realizados tentando entender o porque dessa inclinação. Num deles, eles cobriram a ponta das coleoptiles tão logo elas emergiram do solo e essas plantas não mostraram inclinação para a luz. Da mesma forma, a inclinação não ocorria quando o ápice da coleoptile era removido (decapitação). Porém, quando a parte basal era protegida da luz, a coleptile ainda se curvava. Figura 12.1: Experiência dos Darwin.


Figura 12.2: Auxinas. A) auxina natural; B e C) auxinas sintéticas. Um grande número de auxinas manufaturadas (sintéticas) foi feito e tem estrutura similar ao AIA. Elas têm várias aplicações comerciais, como o ácido naftaleno acético (ANA), que é usado para estimular o desenvolvimento de raízes em caules cortados para propagação vegetativa, particularmente de plantas lenhosas. Uma outra auxina sintética, o ácido 2,4 diclorofenoxiacético (2,4D, figura 12.2), é usado como um herbicida seletivo, principalmente para plantas de folhas largas. Ele é aplicado em altas concentrações e causa um crescimento exagerado em algumas partes da planta e a inibição do crescimento em outras. Por razões ainda não bem entendidas, monocotiledôneas são menos sensíveis à concentrações similares de 2,4D aplicadas. Portando, a aplicação de 2,4D num campo de milho matará as ervas daninhas de folhas largas (dicotiledôneas), mas provavelmente não danificará o milho. 12.2 Giberelinas Em 1926, o fisiologista japonês, E. Kurosawa, trabalhava com uma doença do arroz chamada "Bakanae" (plantinha boba), na qual plântulas cresciam extremamente altas e espiraladas mas depois caíam, diminuindo seriamente o rendimento. A causa desta doença foi descoberta ser um fungo, Gibberella fujikuroi , que produzia a giberelina, substância causadora desses sintomas. Em 1935, Yabuta purificou parcialmente a substância ativa e obteve cristais que denominou giberelinas A e B por causa do fungo. Essa descoberta, agora considerada importante, não atraiu inicialmente muita atenção, por causa da publicação


ter sido feita em japonês e, além disso, no início da Segunda Guerra Mundial. A produção em larga escala do fungo para obter a substância só se deu mais tarde, no Ocidente, e por volta de 1955 a giberelina já podia ser comercialmente obtida. As giberelinas estão envolvidas em muitas funções normais da planta. No caso da doença do arroz, os sintomas foram causados por uma alta concentração, anormal, de giberelina no tecido vegetal. As giberelinas têm uma estrutura química complexa, composta de cinco anéis (diterpenos cíclicos, que possuem um esqueleto ent- giberelano, figura 12.3). Mais de 70 giberelinas que ocorrem naturalmente já foram descobertas e todas têm a mesma estrutura básica, diferindo no número de duplas ligações e na localização de grupos químicos. Entretanto, essas diferenças estruturais são importantes. Algumas giberelinas têm um efeito pronunciado no crescimento vegetal, enquanto outras são inativas e talvez estas sejam formas precursoras das ativas. Figura 12.3: Três exemplos de giberelinas que foram isoladas de fontes naturais. O ácido giberélico (GA 3 ) é a giberelina mais abundante nos fungos e a mais ativa do ponto de vista biológico em muitos testes. As setas indicam as pequenas diferenças estruturais que distinguem as outras duas giberelinas. As giberelinas são produzidas em meristemas apicais do caule e raiz, em folhas jovens e no embrião da semente. O modo de translocação deste hormônio ainda não está esclarecido, provavelmente são translocados via xilema e floema. Elas promovem o alongamento do caule em muitas plantas. Quando a giberelina é aplicada numa planta, este alongamento pode ser espetacular, particularmente em plantas que normalmente têm o caule muito curto. Mutantes anões num único gene de milho e ervilha crescerão até uma altura normal quando tratados com giberelinas. As giberelinas também estão envolvidas no rápido alongamento do caule que ocorre quando muitas plantas iniciam a floração. Em todos esses casos, as giberelinas causam alongamento caulinar por indução da divisão e alongamento celular. Entretanto, o mecanismo de alongamento celular parece ser diferente daquele causado pela auxina. As giberelinas estão envolvidas em vários processos reprodutivos nas plantas. Elas estimulam o florescimento, particularmente em plantas de dias longos. Em adição, podem substituir a necessidade de frio que plantas bienais têm antes de iniciar a floração. Se giberelinas são aplicadas em plantas bienais durante seu primeiro ano de crescimento, ocorre a floração sem o período frio. Como as auxinas, as giberelinas afetam o desenvolvimento dos frutos. Comercialmente, elas são aplicadas a uma larga variedade de uvas para produzir maiores bagas. Estão também envolvidas na germinação de sementes em muitas plantas. O embrião na semente produz giberelinas que desengatilham outras respostas fisiológicas envolvidas na germinação. Em plantas que necessitam de luz ou frio para a germinação da semente, aplicações artificiais de giberelinas podem substituir essas necessidades ambientais específicas. Esses fitormônios têm um importante papel na produção de


Figura 12.4: Observe as semelhanças entre a purina adenina e as quatro citocininas. Um efeito muito interessante da citocinina nas células vegetais é um atraso em sua senescência, ou envelhecimento. Células vegetais, como todas as células vivas, apresentam um processo natural de envelhecimento. Esse processo é acelerado nas células de órgãos vegetais que foram cortados, tais como flores cortadas. As citocininas, de alguma forma, fazem com que as células mantenham seus níveis normais de proteínas e ácido nucleicos e, com isso, retardam o envelhecimento acelerado associado ao corte do órgão vegetal. Acredita-se que as plantas devam ter um suprimento contínuo de citocininas das raízes. Flores cortadas, é claro, perdem sua fonte de citocininas por isto essas são comercialmente usadas para borrifar flores colhidas, prevenindo sua acelerada senescência. 12.4 Etileno O etileno é o único hormônio vegetal gasoso (figura 12.5). Seus efeitos nos vegetais foram percebidos no século 19, muito antes de ser reconhecido como um hormônio vegetal. Antes do advento da eletricidade, uma mistura de vários gases era usada para iluminar casas e também na iluminação de ruas. Percebeu-se que as plantas que cresciam perto dos pontos de iluminação nas ruas eram diferentes, em vários aspectos, de plantas normais. As árvores perdiam suas folhas cedo, as flores murchavam rapidamente, perdiam as pétalas e as sementes que germinavam também próximas aos focos de luz cresciam mais horizontalmente. Em 1901, um fisiologista vegetal determinou que o etileno era a substância presente nos pontos de iluminação e que causava esses efeitos. Porém, somente em 1934, cientistas puderam afirmar que o etileno também era produzido pela própria planta. O etileno é incolor e tem um cheiro que lembra o éter. É produzido em várias partes do vegetal: nos nós do caule, em frutos maduros e em tecidos senescentes, tais como folhas velhas. CH 2 CH 2


Figura 12.5: Etileno. Um hidrocarboneto simples envolvido na maturação do fruto. Muitos processos vegetais são influenciados pelo etileno. Ele inibe o alongamento celular, promove a germinação de sementes e está relacionado à resposta do vegetal a ferimentos ou invasão por patógenos. Seu papel principal está na senescência, incluindo o processo de amadurecimento dos frutos. Um grande número de mudanças fisiológicas ocorrem durante o amadurecimento dos frutos, como mudanças de cor (pela degradação da clorofila e síntese de outros pigmentos), conversão de amido e ácidos estocados em açúcar, tornando o fruto com sabor adocicado, etc. O etileno desengatilha estas mudanças fisiológicas promovendo um "efeito dominó". O fruto maduro produz etileno, este inicia uma aceleração do processo de amadurecimento, o que, por sua vez, induz o fruto a produzir mais etileno, acelerando mais e mais o processo. Por apresentar esses efeitos, o etileno é usado comercialmente para promover o amadurecimento uniforme de frutos, por exemplo, a banana. Estas são apanhadas verdes e transportadas até seu destino, onde são então expostas ao etileno. O etileno tem também sido relacionado à indução da abscisão foliar. Na verdade, a abscisão foliar está sob o controle de dois hormônios vegetais que são antagônicos: o etileno e a auxina. Com o aumento da idade das folhas e a chegada do inverno, os níveis de auxina nas folhas decresce. Isto inicia várias mudanças na zona de abscisão foliar. Paralelamente, as células da zona de abscisão começam a produzir etileno, tendo início novos fenômenos. Para complicar ainda mais o processo, é possível que citocininas possam estar envolvidas. Assim como as auxinas, as citocininas decrescem em quantidade com o aumento da idade do tecido foliar. O modo como as plantas reconhecem o etileno, bem como respondem à sua presença é ainda desconhecido. Em 1988, um mutante de Arabdopsis (uma planta da família do agrião) foi observado ser imune ao etileno. Talvez, estudos posteriores desse mutante possam elucidar o modo de ação do etileno. 12.5 Ácido Abscísico O último hormônio a ser tratado aqui é o ácido abscísico, que foi descoberto em 1963 por dois grupos de pesquisadores, simultaneamente. P. F. Wareing na Inglaterra trabalhava com um hormônio que induzia a dormência de brotos em plantas lenhosas, enquanto F. T. Addicott, na Califórnia, trabalhava com um hormônio que promovia a abscisão de frutos de algodão. Mais tarde, quando as estruturas de ambos hormônios encontrados mostraram- se idênticas, esta substância foi chamada de ácido abscísico. A denominação foi uma infeliz escolha porque o ácido abscísico está primariamente envolvido na dormência, não sendo a abscisão sua principal área de atuação. O ácido abscísico, ou simplesmente ABA, é composto por um anel de 6 carbonos com um número variado de radicais (figura 12.6). Pode ser produzido na folha, raiz e caule, sendo transportado no floema. O nível de ABA também é alto em sementes e frutos, mas não está claro se ele é sintetizado por ou transportados para eles.


Tabela 12.1: Interações entre os hormônios vegetais durante várias etapas do crescimento vegetal Atividade fisiológica AUXINA GIBERELINA CITOCININA ETILENO ABA OUTROS FATORES germinação de sementes promove? promove inibe

  • frio
    • luz crescimento da plântula alongam/o celular; organogê- nese
  • divisão celular
  • alongamento celular
  • divisão e dife- renciação cel.
  • organogênese inibe o alon- gamento celular dominância apical inibe o de- senvolvi- mento de gemas laterais
  • promove o de- senvolvimento de gemas laterais ? florescimen to estimula, em algumas plantas ?
  • frio
  • fotoperio- dismo Desenvolvi- mento do fruto estimula estimula promove amadureci- mento luz (forma- ção de pig- mentos) abscisão foliar inibe inibe promove? luz dormência da semente quebra? promove

13 Crescimento e Desenvolvimento

Os seres vivos precisam regular suas atividades de acordo com o mundo que os circunda. Os animais, sendo móveis, são capazes de modificar suas circunstâncias até certo grau. No entanto, uma planta superior, uma vez emitida sua primeira raiz, torna- se imobilizada e incapaz de modificar o ambiente no qual deve crescer e reproduzir-se. Por esta razão, as plantas superiores caracterizam-se por notável capacidade de ajustar e mesmo antecipar alterações em seu ambiente. Estas adaptações especiais se manifestam principalmente em padrões de modificação do crescimento. 13.1 Mudanças no turgor Mudanças no turgor das células podem induzir movimentos vegetais. Mimosa pudica (conhecida como “dorme-João”), a planta sensitiva , fecha dramaticamente suas folhas em resposta a um estímulo externo. Este pode ser mecânico, elétrico, químico ou térmico. É possível que esse comportamento incomum proteja a planta de predadores. Quando a folha de Mimosa é estimulada pelo toque, um impulso elétrico se move para baixo da folha para células especiais num órgão que fica na base do pecíolo, os pulvinos. Enquanto se sabe que em plantas como Mimosa sinais elétricos são uma forma de comunicação intercelular, não é completamente entendido o mecanismo da transmissão desses sinais. Quando o sinal elétrico alcança as células do pulvino, provocam a perda de turgor naquelas células e íons K+, taninos e água deixam as células. A rápida mudança na turgidez causa o movimento foliar. O tanino, que normalmente é estocado no vacúolo, dá um gosto amargo ao tecido e alguns pesquisadores sugerem que esta seria uma adaptação adicional para prevenir a predação. Mudanças no turgor são também responsáveis por movimentos orientados pelo Sol (a capacidade de flores e folhas acompanharem os movimentos do Sol através do céu). Freqüentemente, as folhas dessas plantas são arranjadas perpendicularmente aos raios solares, indiferente da hora do dia ou posição do Sol no céu. Isto para permitir a máxima absorção de luz. Como exemplo desses "seguidores do Sol" podemos citar o girassol, a soja e o algodão. 13.2 O Relógio Biológico Plantas, animais e microrganismos parecem ter um timer interno ou relógio biológico, que se aproxima de um ciclo de 24 horas. Esses ciclos internos são conhecidos como ritmos circadianos ( circadiano provém do Latim e significa "cerca de um dia"). Os ritmos circadianos estão, geralmente, entre 20 e 30 horas. Na natureza, o nascer e o pôr-do-Sol reajustam o relógio a cada dia (para um ciclo de 24 horas). O fitocromo (fotorreceptor envolvido no fotoperiodismo) tem sido cotado para ser o fotorreceptor envolvido no reajuste do relógio biológico para muitas plantas. Um exemplo de ritmo circadiano em plantas é a abertura e o fechamento estomático que ocorrem independentemente da luz ou escuro. Plantas colocadas no