Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Prof. Broughton's Answers to Diff. Equations & Matrix Algebra II Worksheet #6, Assignments of Mathematics

The answers to worksheet #6 of the differential equations and matrix algebra ii course taught by professor broughton. It includes the solutions to various limit and integration problems.

Typology: Assignments

Pre 2010

Uploaded on 08/18/2009

koofers-user-x9i
koofers-user-x9i 🇺🇸

5

(1)

10 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Differential Equations and Matrix Algebra II
Answers to Worksheet #6
Professor Broughton
Name: Section #: Box #:
Due: Tuesday, January 15
1.
Z
1
x3dx = lim
b→∞ Zb
0
x3dx = lim
b→∞ ·x2
2¸b
1
= lim
b→∞
(x21
2) = 1
2.
2.
Z
0
dx
1 + x2= lim
b→∞ Zb
0
dx
1 + x2= lim
b→∞ £tan1(x)¤b
0= lim
b→∞
(tan1(b)) = π
2.
3.
Z
5
e3tdt = lim
b→∞ Zb
5
e3tdt = lim
b→∞ ·e3t
3¸b
51
=1
3lim
b→∞
(e3be15) = e15
3.
4.
Z
0
te3tdt = lim
b→∞ Zb
0
te3tdt = lim
b→∞ Zb
0
td e3t
3
= lim
b→∞ ÷te3t
3¸b
0
Zb
0
e3t
3dt!= lim
b→∞ Ãbe3b
3+1
3·e3t
3¸b
0!
= lim
b→∞ µbe3b
3e3b
9+1
9=1
9.
6.
L{t2}=Z
0
testdt = lim
b→∞ Zb
0
t2estdt = lim
b→∞ Zb
0
t2dest
s
= lim
b→∞ ·t2est
s¸b
0
lim
b→∞ Zb
0
est
sdt2= 0 + 2
slim
b→∞ Zb
0
testdt
=2
sL{t}=2
s
1
s2=2
s3.
pf2

Partial preview of the text

Download Prof. Broughton's Answers to Diff. Equations & Matrix Algebra II Worksheet #6 and more Assignments Mathematics in PDF only on Docsity!

Differential Equations and Matrix Algebra II

Answers to Worksheet

Professor Broughton

Name: Section #: Box #: Due: Tuesday, January 15

  1. (^) ∫ ∞ 1

x−^3 dx = lim b→∞

∫ (^) b

0

x−^3 dx = lim b→∞

[

x−^2 − 2

]b

1

= lim b→∞( x−^2 − 1 − 2

0

dx 1 + x^2 = lim b→∞

∫ (^) b

0

dx 1 + x^2 = lim b→∞

[

tan−^1 (x)

]b 0 = lim b→∞(tan

− (^1) (b)) = π 2

5

e−^3 tdt = lim b→∞

∫ (^) b

5

e−^3 tdt = lim b→∞

[

e−^3 t − 3

]b

51

blim→∞(e−^3 b^ −^ e−^15 ) =^

e−^15 3

0

te−^3 tdt = lim b→∞

∫ (^) b

0

te−^3 tdt = lim b→∞

∫ (^) b

0

td e−^3 t − 3

= lim b→∞

([

t e−^3 t − 3

]b

0

∫ (^) b

0

e−^3 t − 3

dt

= lim b→∞

b e−^3 b − 3

[

e−^3 t − 3

]b

0

= lim b→∞

b e−^3 b − 3

e−^3 b − 9

L{t^2 } =

0

te−stdt = lim b→∞

∫ (^) b

0

t^2 e−stdt = lim b→∞

∫ (^) b

0

t^2 d e−st −s

= lim b→∞

[

t^2 e−st −s

]b

0

− lim b→∞

∫ (^) b

0

e−st −s

dt^2 = 0 +

s

lim b→∞

∫ (^) b

0

te−stdt

=

s L{t} =

s

s^2

s^3

L{e−^5 t} =

0

e−^5 te−stdt = lim b→∞

∫ (^) b

0

e−^5 te−stdt = lim b→∞

∫ (^) b

0

e−^5 te−stdt

= lim b→∞

∫ (^) b

0

e−(s+5)tdt = lim b→∞

[

e−(s+5)t −(s + 5)

]b

0 = lim b→∞

e−(s+5)b −(s + 5)

s + 5

s + 5

L{sinh(kt)} = L{ ekt^ − e−kt 2

L{ekt} −

L{e−kt}

=

s − k

s + k

2 k s^2 − k^2

k s^2 − k^2

  1. Use integration by parts:

sin(kt)e−stdt =

sin(kt)de −−sts = sin(kt)e −−sts − ∫ (^) e−st −s d^ sin(kt) =^ · · ·^ and^ L{cos(kt)}^ in the book.

L{sin(kt)} =

0

sin(kt)e−stdt = lim b→∞

∫ (^) b

0

sin(kt)e−stdt = lim b→∞

∫ (^) b

0

sin(kt)d e−st −s

= lim b→∞

[

sin(kt)e−st −s

]b

0

− lim b→∞

∫ (^) b

0

e−st −s

d sin(kt)

= lim b→∞ sin(kb)e−sb −s

k s blim→∞

∫ (^) b

0

cos(kt)e−stdt

= 0 + k s L{cos(kt)} = k s

s s^2 + k^2

k s^2 + k^2