Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Trigonometric Substitution Cheat Sheet with Examples and Q&A, Cheat Sheet of Trigonometry

Complete cheat sheet on Trigonometric Substitution with examples, formulas, exercises with right answers

Typology: Cheat Sheet

2019/2020

Uploaded on 10/23/2020

butterflymadam
butterflymadam 🇺🇸

4.4

(26)

312 documents

1 / 12

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Trigonometric Substitution
In finding the area of a circle or an ellipse, an integral of the form arises,
where . If it were , the substitution would be effective
but, as it stands, is more difficult. If we change the variable from to by
the substitution , then the identity allows us to get rid of the
root sign because
Notice the difference between the substitution (in which the new variable is
a function of the old one) and the substitution (the old variable is a function of
the new one).
In general we can make a substitution of the form by using the Substitution
Rule in reverse. To make our calculations simpler, we assume that has an inverse func-
tion; that is, is one-to-one. In this case, if we replace by and by in the Substitution
Rule (Equation 5.5.4), we obtain
This kind of substitution is called inverse substitution.
We can make the inverse substitution provided that it defines a one-to-one
function. This can be accomplished by restricting to lie in the interval .
In the following table we list trigonometric substitutions that are effective for the given
radical expressions because of the specified trigonometric identities. In each case the restric-
tion on is imposed to ensure that the function that defines the substitution is one-to-one.
(These are the same intervals used in Appendix D in defining the inverse functions.)
Table of Trigonometric Substitutions
EXAMPLE 1 Evaluate .
SOLUTION Let , where . Then and
(Note that because .) Thus, the Inverse Substitution Rule
gives
cot
C
y csc2
1 d
y cos2
sin2
d
y cot2
d
y s9x2
x2 dx y 3 cos
9 sin2
3 cos
d
2
2cos
0
s9x2s99 sin2
s9 cos2
3
cos
3 cos
dx 3 cos
d
2
2x3 sin
y s9x2
x2 dx
2,
2
xa sin
y fx dx y ftttt dt
txxutt
xtt
xa sin
ua2x2
sa2x2sa2a2sin2
sa21sin2
sa2cos2
a
cos
1sin2
cos2
xa sin
xx sa2x2 dx
ua2x2
x xsa2x2 dxa0x sa2x2 dx
1
Expression Substitution Identity
sec2
1tan2
xa sec
,0
2or
3
2
sx2a2
1tan2
sec2
xa tan
,
2
2
sa2x2
1sin2
cos2
xa sin
,
2
2
sa2x2
pf3
pf4
pf5
pf8
pf9
pfa

Partial preview of the text

Download Trigonometric Substitution Cheat Sheet with Examples and Q&A and more Cheat Sheet Trigonometry in PDF only on Docsity!

Trigonometric Substitution

In finding the area of a circle or an ellipse, an integral of the form arises,

where. If it were , the substitution would be effective

but, as it stands, is more difficult. If we change the variable from to by

the substitution , then the identity allows us to get rid of the

root sign because

Notice the difference between the substitution (in which the new variable is

a function of the old one) and the substitution (the old variable is a function of

the new one).

In general we can make a substitution of the form by using the Substitution

Rule in reverse. To make our calculations simpler, we assume that has an inverse func-

tion; that is, is one-to-one. In this case, if we replace by and by in the Substitution

Rule (Equation 5.5.4), we obtain

This kind of substitution is called inverse substitution.

We can make the inverse substitution provided that it defines a one-to-one

function. This can be accomplished by restricting to lie in the interval.

In the following table we list trigonometric substitutions that are effective for the given

radical expressions because of the specified trigonometric identities. In each case the restric-

tion on is imposed to ensure that the function that defines the substitution is one-to-one.

(These are the same intervals used in Appendix D in defining the inverse functions.)

Table of Trigonometric Substitutions

EXAMPLE 1 Evaluate.

SOLUTION Let , where. Then and

(Note that because .) Thus, the Inverse Substitution Rule

gives

 cot    C

 (^) y csc 2

  1  d 

 (^) y

cos

2 

sin

2 

d   (^) y cot 2

 d 

y

s 9  x^2

x

2 dx^ ^ y^

3 cos 

9 sin

2 

3 cos  d 

cos   0  2   2

s 9  x^2  s 9  9 sin 2   s9 cos 2   (^3)  cos  (^)   3 cos 

x  3 sin   2   2 dx  3 cos  d 

y

s 9  x^2

x

2 dx



x  a sin 

y f^  x ^ dx^ ^ y f^ t t t t ^ dt

t u x x t

t

x  t t 

x  a sin 

u  a

2

 x

2

s a^2  x^2  s a^2  a^2 sin 2   s a^2  1  sin 2   s a^2 cos 2   a (^)  cos  (^) 

1  sin

2

  cos

2

x  a sin  

x s a^2  x^2 dx x 

u  a

2

 x

2 a  0 x x s a^2  x^2 dx

x s a^2  x^2 dx

1

Expression Substitution Identity

x  a sec , 0  sec 2   1  tan 2 

or  

s x^^2 ^ a^^2

x  a tan ,  1  tan 2   sec 2 

s a^2  x^2

1  sin 2   cos 2 x  a sin ,  

s a^2  x^2

Since this is an indefinite integral, we must return to the original variable. This can be

done either by using trigonometric identities to express in terms of or

by drawing a diagram, as in Figure 1, where is interpreted as an angle of a right triangle.

Since , we label the opposite side and the hypotenuse as having lengths and.

Then the Pythagorean Theorem gives the length of the adjacent side as , so we

can simply read the value of from the figure:

(Although in the diagram, this expression for is valid even when .)

Since , we have and so

EXAMPLE 2 Find the area enclosed by the ellipse

SOLUTION Solving the equation of the ellipse for , we get

Because the ellipse is symmetric with respect to both axes, the total area is four times

the area in the first quadrant (see Figure 2). The part of the ellipse in the first quadrant is

given by the function

and so

To evaluate this integral we substitute. Then. To change the

limits of integration we note that when , , so ; when ,

, so. Also

since. Therefore

We have shown that the area of an ellipse with semiaxes and is. In particular,

taking , we have proved the famous formula that the area of a circle with

radius is.

NOTE ■■ Since the integral in Example 2 was a definite integral, we changed the limits of

integration and did not have to convert back to the original variable x.

 r

2

r

a  b  r

a b  ab

  ab

 2 ab [  

1

2 sin 2] 0

 2

 2 ab 



 4 ab y

 2

0

cos

2

 d   4 ab y

 2

0

1

2 ^1 ^ cos 2^ d 

A  4

b

a

y

a

0

s a^2  x^2 dx  4

b

a

y

 2

0

a cos   a cos  d 

s a^2  x^2  s a^2  a^2 sin 2   s a^2 cos 2   a  cos    a cos 

sin   1    2

x  0 sin   0   0 x  a

x  a sin  dx  a cos  d 

1

4 A^ ^ y

a

0

b

a

s a^2  x^2 dx

y  0  x  a

b

a

s a^2  x^2

A

y 

b

a

or s a^2  x^2

y

2

b

2 ^1 ^

x

2

a

2 ^

a

2

 x

2

a

2

y

x

2

a

2 ^

y

2

b

2 ^1

y

s 9  x^2

x^2

dx  

s 9  x^2

x

 sin^1 

x

^ C

  sin

 1

sin   x  3  x  3 

  0 cot   0

cot  

s 9  x^2

x

cot 

s 9  x^2

sin   x  3 x 3



cot  sin   x  3

x

2 ■ TRIGONOMETRIC SUBSTITUTION

x

œ„„„„9-≈ „

FIGURE 1

sin ¨=

x 3

FIGURE 2

a@

b@

y

0 x

(0, b)

(a, 0)

4 ■ TRIGONOMETRIC SUBSTITUTION

The triangle in Figure 4 gives , so we have

Writing , we have

EXAMPLE 6 Find.

SOLUTION First we note that so trigonometric substitution

is appropriate. Although is not quite one of the expressions in the table of

trigonometric substitutions, it becomes one of them if we make the preliminary substitu-

tion. When we combine this with the tangent substitution, we have ,

which gives and

When , , so ; when , , so.

Now we substitute so that. When , ; when

Therefore

EXAMPLE 7 Evaluate.

SOLUTION We can transform the integrand into a function for which trigonometric substi-

tution is appropriate by first completing the square under the root sign:

 4   x  1 

2

3  2 x  x

2

 3   x

2

 2 x   3  1   x

2

 2 x  1 

y

x

s^3 ^2 x^ ^ x

2

dx

3

16  u^ ^

u

1

1  2

3 16 [(^

1 2 ^ 2)^ ^ ^1 ^1 ]^ ^

3 32

y

(^3) s 3  2

0

x

3

 4 x

2

3  2 dx^ ^ ^

3

16 y

1  2

1

1  u

2

u

2 du^ ^

3

16 y

1  2

1

 1  u

 2

 du

  3, u 

1 2

u  cos  du  sin  d    0 u  1

3

16 y

 3

0

1  cos

2 

cos

2 

sin  d 

3

16 y

 3

0

tan

3 

sec 

d  

3

16 y

 3

0

sin

3 

cos

2 

d 

y

(^3) s 3  2

0

x

3

 4 x

2

3  2 dx^ ^ y

 3

0

27

8 tan^

3 

27 sec

3 

3

2 sec^

2

 d 

x  0 tan   0   0 x  3 s 3  2 tan   s 3    3

s^4 x

s9 tan^

2   9  3 sec 

dx 

3

2 sec^

2

 d 

x 

3

u  2 x 2 tan 

s^4 x

 4 x

2

3  2

 s 4 x^2  9)

3

y

(^3) s 3  2

0

x

3

 4 x

2

3  2 dx

y

dx

s x^2  a^2

 ln  x  s x^2  a^2   C 1

C 1  C  ln a

 ln  x  s x^2  a^2   ln a  C

y

dx

s x^2  a^2

 ln 

x

a

s x^2  a^2

a

 ^ C

tan   s x^2  a^2  a

FIGU RE 4

sec ¨=

x a

œ „„„„„

a

x ≈-a@

This suggests that we make the substitution. Then and , so

y

x

s^3 ^2 x^ ^ x

2

dx  y

u  1

s^4 ^ u

2

du

u  x  1 du  dx x  u  1

TRIGONOMETRIC SUBSTITUTION ■ 5

We now substitute , giving and , so

 s 3  2 x  x^2  sin^1 

x  1

^ C

 s 4  u^2  sin^1 

u

^ C

 2 cos    C

 y 2 sin   1  d 

y

x

s 3  2 x  x^2

dx  y

2 sin   1

2 cos 

2 cos  d 

u  2 sin  du  2 cos  d  s 4  u^2  2 cos 

Exercises

1–3 Evaluate the integral using the indicated trigonometric

substitution. Sketch and label the associated right triangle.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

4–30 Evaluate the integral.

17. 18. (^) y

dx  ax ^2  b^2 ^3 ^2 y

x

s x^^2 ^7

dx

y

dx

x 2 s 16 x^2  9

y

x 2

 a 2  x 2  3  2 dx

y

du

u s 5  u^2

y

s x^^2 ^9 x 3 dx

y

1 0 y s^1 ^4 x^^2 dx^ x^ s x^^2 ^4 dx

y

t^5

s t^2  2

y dt

dx

s x^2  16

y

s x^2  a^2 x^4 y dx

x^2 s 25  x^2

dx

y

2 0 y^ x^^3 s x^^2 ^4 dx

2 s 2

t 3 s t^2  1

dt

y

(^2) s 3 0

x^3

s 16  x^2

dx

y x^ ^ 3 tan^ 

x 3

s x^^2 ^9

dx

y x^ x^ ^ 3 sin^ 

3 s 9  x^2 dx

y x^ ^ 3 sec^ 

x^2 s x^2  9

dx

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

31. (a) Use trigonometric substitution to show that

(b) Use the hyperbolic substitution to show that

These formulas are connected by Formula 3.9.3.

32. Evaluate

(a) by trigonometric substitution. (b) by the hyperbolic substitution x  a sinh t.

y

x 2

 x 2  a 2  3  2 dx

y

dx

s x^^2 ^ a^^2

 sinh^1 

x a

^ C

x  a sinh t

y

dx

s x^2  a^2

 ln( x  (^) s x^2  a^2 )  C

y

 2 0

cos t s 1  sin 2 t

y x^ s^1 ^ x^^4 dx dt

y

dx

 5  4 x  x 2 

y (^5)  2

dx

 x 2  2 x  2  2

y

x^2

s 4 x  x^2

y dx

s 9 x^2  6 x  8

dx

y

dt

s t^^2 ^6 t^ ^13

y s^5 ^4 x^ ^ x^

(^2) dx

y

1 0 y s x^^2 ^1 dx

2  3 0

x^3 s 4  9 x^2 dx

y

t s 25  t^2

y dt

s 1  x^2 x

A Click here for answers. S Click here for solutions. dx

TRIGONOMETRIC SUBSTITUTION ■ 7

Answers

15. ( x s a^2  x^2 )  sin^1  x  a   C 17. s x^2  7  C

1 6 sec

 (^1)  x  3   s x (^2)  9  2 x (^2)   C

1 4 sin

 1  2 x  

1 2 x^ s^1 ^4 x^ ln(s x^2  16  x )  C^2  C

 24  s 3  8  s 25  x^2  25 x   C

1 4

1 3  x^

2 s x^2  9  9 x   C  18  s x^2  9  C

39. r (^) s R^2  r^2  r^2  2  R^2 arcsin r  R  41. 2  2 Rr^2

1 6 (s^48 ^ sec

 1

1 4 sin

 (^1) x (^2)  1 4 x^

2 s^1 ^ x^^4 ^ C

1 2 tan

 1  x  1    x  1  x 2  2 x  2   C

1 3 ln^  3 x^ ^1 ^ s^9 x^ (^2)  6 x  8  ^ C

9 2 sin

 1  x  2  3  

1 2 ^ x^ ^2 s^5 ^4 x^ ^ x^

2  C

64 ln (^) (s 1  x (^) 1215 (^2)  1) x  ^ s^1 ^ x^

2  C

S Click here for solutions.

1. Let x = 3 sec θ, where 0 ≤ θ < π 2 or^ π^ ≤^ θ^ <^

3 π

  1. Then dx = 3 sec θ tan θ dθ and p x^2 − 9 =

p 9 sec^2 θ − 9 =

p 9(sec^2 θ − 1) =

9 tan^2 θ

= 3 |tan θ| = 3 tan θ for the relevant values of θ.

Z

x^2

x^2 − 9

dx =

Z

9 sec^2 θ · 3 tan θ

3 sec θ tan θ dθ = 1 9

R

cos θ dθ = 1 9 sin^ θ^ +^ C^ =

x^2 − 9 x

+ C

Note that − sec(θ + π) = sec θ, so the figure is sufficient for the case π ≤ θ < 3 π

3. Let x = 3 tan θ, where − π 2 < θ < π 2. Then dx = 3 sec 2 θ dθ and

p x^2 + 9 =

p 9 tan^2 θ + 9 =

q 9(tan^2 θ + 1) =

9 sec^2 θ

= 3 |sec θ| = 3 sec θ for the relevant values of θ.

Z

x 3 √ x^2 + 9

dx =

Z

3 tan 3 θ 3 sec θ

3 sec 2 θ dθ = 3 3

Z

tan 3 θ sec θdθ = 3 3

Z

tan 2 θ tan θ sec θ dθ

3 R ¡

sec 2 θ − 1

tan θ sec θ dθ = 3

3 R ¡

u 2 − 1

du [u = sec θ, du = sec θ tan θ dθ]

3 ¡^1

3 u

3 − u

+ C = 3

3 ¡^1

3 sec

3 θ − sec θ

+ C = 3

3

x 2

  • 9

x^2 + 9 3

+ C

1 3

x

2

  • 9

p x^2 + 9 + C or 1 3

x

2 − 18

¢ p x^2 + 9 + C

5. Let t = sec θ, so dt = sec θ tan θ dθ, t =

2 ⇒ θ = π 4 , and^ t^ = 2^ ⇒^ θ^ =^

π

  1. Then

Z (^2)

√ 2

t^3

t^2 − 1

dt =

Z (^) π/ 3

π/ 4

sec^3 θ tan θ

sec θ tan θ dθ =

Z (^) π/ 3

π/ 4

sec^2 θ

dθ =

Z (^) π/ 3

π/ 4

cos 2 θ dθ

R (^) π/ 3 π/ 4

1 2 (1 + cos 2θ)^ dθ^ =^

1 2

θ + 1 2 sin 2θ

¤π/ 3 π/ 4

1 2

h³ π 3 +^

1 2

√ 3 2

¡ (^) π 4 +^

1 2 ·^1

¢i

1 2

π 12 +^

√ 3 4 −^

1 2

π 24 +^

√ 3 8 −^

1 4

7. Let x = 5 sin θ, so dx = 5 cos θ dθ. Then Z 1

x^2

25 − x^2

dx =

Z

52 sin^2 θ · 5 cos θ

5 cos θ dθ

1 25

R

csc 2 θ dθ = − 1 25 cot^ θ^ +^ C

25 − x^2 x

+ C

8 ■ TRIGONOMETRIC SUBSTITUTION

Solutions: Trigonometric Substitution

19. Let x = tan θ, where − π 2 <^ θ^ <^

π

  1. Then^ dx^ = sec

2 θ dθ

and

1 + x^2 = sec θ, so Z √ 1 + x^2 x

dx =

Z

sec θ tan θ

sec 2 θ dθ =

Z

sec θ tan θ

(1 + tan 2 θ) dθ

R

(csc θ + sec θ tan θ) dθ

= ln

1 + x^2 x

x

1 + x^2 1

  • C = ln

1 + x^2 − 1 x

1 + x^2 + C

21. Let u = 4 − 9 x 2 ⇒ du = − 18 x dx. Then x 2 = 1 9 (4^ −^ u)^ and

R (^2) / 3 0 x

4 − 9 x^2 dx =

R 0

4

1 9 (4^ −^ u)u

1 18

du = 1 162

R 4

0

4 u 1 / 2 − u 3 / 2

du

1 162

h 8 3 u

3 / 2 − 2 5 u

5 / 2

i 4

0

1 162

64 3 −^

64 5

64 1215

Or: Let 3 x = 2 sin θ, where − π 2 ≤^ θ^ ≤^

π

23. 5 + 4x − x 2 = −(x 2 − 4 x + 4) + 9 = −(x − 2) 2 + 9. Let

x − 2 = 3 sin θ, − π 2 ≤ θ ≤ π 2 , so dx = 3 cos θ dθ. Then R √ 5 + 4x − x^2 dx =

R p 9 − (x − 2)^2 dx =

R p 9 − 9 sin 2 θ 3 cos θ dθ

=

R √

9 cos^2 θ 3 cos θ dθ =

R

9 cos 2 θ dθ

= 9 2

R

(1 + cos 2θ) dθ = 9 2

θ + 1 2 sin 2θ

+ C

9 2 θ^ +^

9 4 sin 2θ^ +^ C^ =^

9 2 θ^ +^

9 4 (2 sin^ θ^ cos^ θ) +^ C

sin − 1

μ x − 2 3

x − 2 3

5 + 4x − x^2 3

+ C

sin − 1

μ x − 2 3

(x − 2)

5 + 4x − x^2 + C

25. 9 x^2 + 6x − 8 = (3x + 1) 2 − 9 , so let u = 3x + 1, du = 3dx. Then

Z

dx √ 9 x^2 + 6x − 8

Z 1

√^3 du u^2 − 9

. Now

let u = 3 sec θ, where 0 ≤ θ < π 2 or^ π^ ≤^ θ^ <^

3 π

  1. Then^ du^ = 3 sec^ θ^ tan^ θ^ dθ^ and^

u^2 − 9 = 3 tan θ, so

Z (^1) 3 du √ u^2 − 9

Z

sec θ tan θ dθ 3 tan θ

1 3

R

sec θdθ = 1 3 ln|sec^ θ^ + tan^ θ|^ +^ C^1 =^

1 3 ln

u +

u^2 − 9 3

¯ +^ C^1

3 ln

¯u^ +^

p u^2 − 9

¯ +^ C^ =^

1 3 ln

¯^3 x^ + 1 +^

p 9 x^2 + 6x − 8

¯ +^ C

27. x 2 + 2x + 2 = (x + 1) 2 + 1. Let u = x + 1, du = dx. Then

Z dx

(x^2 + 2x + 2)

Z

du

(u^2 + 1)

Z

sec 2 θdθ sec^4 θ

where u = tan θ, du = sec 2 θ dθ, and u^2 + 1 = sec^2 θ

R

cos 2 θ dθ = (^12)

R

(1 + cos 2θ) dθ = 12 (θ + sin θ cos θ) + C

tan − 1 u +

u 1 + u^2

+ C =

tan − 1 (x + 1) +

x + 1 x^2 + 2x + 2

+ C

10 ■ TRIGONOMETRIC SUBSTITUTION

= ln |csc θ − cot θ| + sec θ + C [by Exercise 39 in Additional Topics: Trigonometric Integrals ]

29. Let u = x 2 , du = 2x dx. Then

R x

1 − x^4 dx =

R √

1 − u^2

1 2 du

1 2

R

cos θ · cos θ dθ

where u = sin θ, du = cos θ dθ,

and

1 − u^2 = cos θ

R

1 2 (1 + cos 2θ)dθ^ =^

1 4 θ^ +^

1 8 sin 2θ^ +^ C^ =^

1 4 θ^ +^

1 4 sin^ θ^ cos^ θ^ +^ C

= 1 4 sin

− 1 u + 1 4 u

1 − u^2 + C = 1 4 sin

− 1 (x 2 ) + 1 4 x

2

1 − x^4 + C

31. (a) Let x = a tan θ, where − π 2 <^ θ^ <^

π

  1. Then^

x^2 + a^2 = a sec θ and

Z

dx √ x^2 + a^2

Z

a sec 2 θ dθ a sec θ

Z

sec θ dθ = ln|sec θ + tan θ| + C 1 = ln

x^2 + a^2 a

x a

¯ +^ C^1

= ln

x +

p x^2 + a^2

  • C where C = C 1 − ln |a|

(b) Let x = a sinh t, so that dx = a cosh t dt and

x^2 + a^2 = a cosh t. Then Z dx √ x^2 + a^2

Z

a cosh t dt a cosh t

= t + C = sinh

− 1 x a

+ C.

33. The average value of f(x) =

x^2 − 1 /x on the interval [1, 7] is

1 7 − 1

Z 7

1

x^2 − 1 x

dx =

Z (^) α

0

tan θ sec θ

· sec θ tan θ dθ

where x = sec θ, dx = sec θ tan θ dθ, √ x^2 − 1 = tan θ, and α = sec − 1 7

1 6

R (^) α 0 tan

2 θ dθ = 1 6

R (^) α 0 (sec

2 θ − 1) dθ

h tan θ − θ

0

= 16 (tan α − α)

1 6

48 − sec − 1 7

35. Area of 4 P OQ = 12 (r cos θ)(r sin θ) = 12 r 2 sin θ cos θ. Area of region P QR =

R (^) r r cos θ

r^2 − x^2 dx.

Let x = r cos u ⇒ dx = −r sin u du for θ ≤ u ≤ π

  1. Then we obtain

R √

r^2 − x^2 dx =

R

r sin u (−r sin u) du = −r^2

R

sin^2 u du = − 12 r^2 (u − sin u cos u) + C

1 2 r

2 cos − 1 (x/r) + 1 2 x^

p r^2 − x^2 + C

so

area of region P QR = 1 2

h −r

2 cos

− 1 (x/r) + x

p r^2 − x^2

ir

r cos θ

= (^12)

−r 2 θ + r cos θ r sin θ

= 12 r 2 θ − 12 r 2 sin θ cos θ

and thus, (area of sector P OR) = (area of 4 P OQ) + (area of region P QR) = 1 2 r

2 θ.

TRIGONOMETRIC SUBSTITUTION ■ 11