






Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Complete cheat sheet on Trigonometric Substitution with examples, formulas, exercises with right answers
Typology: Cheat Sheet
1 / 12
This page cannot be seen from the preview
Don't miss anything!
Table of Trigonometric Substitutions
(^) y csc 2
(^) y
2
2
d (^) y cot 2
y
2 dx^ ^ y^
2
s 9 x^2 s 9 9 sin 2 s9 cos 2 (^3) cos (^) 3 cos
y
y f^ x ^ dx^ ^ y f^ t t t t ^ dt
2
2
s a^2 x^2 s a^2 a^2 sin 2 s a^2 1 sin 2 s a^2 cos 2 a (^) cos (^)
2
2
x s a^2 x^2 dx x
2
2 a 0 x x s a^2 x^2 dx
x s a^2 x^2 dx
1
Expression Substitution Identity
x a sec , 0 sec 2 1 tan 2
or
s x^^2 ^ a^^2
x a tan , 1 tan 2 sec 2
s a^2 x^2
1 sin 2 cos 2 x a sin ,
s a^2 x^2
2
1
2
2
0
2
2
0
1
a
0
2
0
1
a
0
2
2
2
2
2
2
2
1
2 ■ TRIGONOMETRIC SUBSTITUTION
x
œ„„„„9-≈ „
sin ¨=
x 3
a@
b@
y
0 x
(0, b)
(a, 0)
4 ■ TRIGONOMETRIC SUBSTITUTION
2
2
2
2
2
3
1
1 2
3 16 [(^
1 2 ^ 2)^ ^ ^1 ^1 ]^ ^
3 32
(^3) s 3 2
0
3
2
3
1 2
1
2
3
1 2
1
2
1 2
3
3
0
2
2
3
3
0
3
3
3
0
3
2
(^3) s 3 2
0
3
2
3
0
27
3
3
3
2
3
2
3
2
3 2
3
(^3) s 3 2
0
3
2
sec ¨=
x a
œ „„„„„
a
x ≈-a@
2
2
TRIGONOMETRIC SUBSTITUTION ■ 5
1–3 Evaluate the integral using the indicated trigonometric
substitution. Sketch and label the associated right triangle.
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
4–30 Evaluate the integral.
17. 18. (^) y
dx ax ^2 b^2 ^3 ^2 y
x
s x^^2 ^7
dx
y
dx
x 2 s 16 x^2 9
y
x 2
a 2 x 2 3 2 dx
y
du
u s 5 u^2
y
s x^^2 ^9 x 3 dx
y
1 0 y s^1 ^4 x^^2 dx^ x^ s x^^2 ^4 dx
y
t^5
s t^2 2
y dt
dx
s x^2 16
y
s x^2 a^2 x^4 y dx
x^2 s 25 x^2
dx
y
2 0 y^ x^^3 s x^^2 ^4 dx
2 s 2
t 3 s t^2 1
dt
y
(^2) s 3 0
x^3
s 16 x^2
dx
y x^ ^ 3 tan^
x 3
s x^^2 ^9
dx
y x^ x^ ^ 3 sin^
3 s 9 x^2 dx
y x^ ^ 3 sec^
x^2 s x^2 9
dx
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
31. (a) Use trigonometric substitution to show that
(b) Use the hyperbolic substitution to show that
These formulas are connected by Formula 3.9.3.
32. Evaluate
(a) by trigonometric substitution. (b) by the hyperbolic substitution x a sinh t.
y
x 2
x 2 a 2 3 2 dx
y
dx
s x^^2 ^ a^^2
x a
x a sinh t
y
dx
s x^2 a^2
ln( x (^) s x^2 a^2 ) C
y
2 0
cos t s 1 sin 2 t
y x^ s^1 ^ x^^4 dx dt
y
dx
5 4 x x 2
y (^5) 2
dx
x 2 2 x 2 2
y
x^2
s 4 x x^2
y dx
s 9 x^2 6 x 8
dx
y
dt
s t^^2 ^6 t^ ^13
y s^5 ^4 x^ ^ x^
(^2) dx
y
1 0 y s x^^2 ^1 dx
2 3 0
x^3 s 4 9 x^2 dx
y
t s 25 t^2
y dt
s 1 x^2 x
TRIGONOMETRIC SUBSTITUTION ■ 7
15. ( x s a^2 x^2 ) sin^1 x a C 17. s x^2 7 C
1 6 sec
(^1) x 3 s x (^2) 9 2 x (^2) C
1 4 sin
1 2 x
1 2 x^ s^1 ^4 x^ ln(s x^2 16 x ) C^2 C
24 s 3 8 s 25 x^2 25 x C
1 4
1 3 x^
2 s x^2 9 9 x C 18 s x^2 9 C
39. r (^) s R^2 r^2 r^2 2 R^2 arcsin r R 41. 2 2 Rr^2
1 6 (s^48 ^ sec
1
1 4 sin
(^1) x (^2) 1 4 x^
2 s^1 ^ x^^4 ^ C
1 2 tan
1 x 1 x 1 x 2 2 x 2 C
1 3 ln^ 3 x^ ^1 ^ s^9 x^ (^2) 6 x 8 ^ C
9 2 sin
1 x 2 3
1 2 ^ x^ ^2 s^5 ^4 x^ ^ x^
64 ln (^) (s 1 x (^) 1215 (^2) 1) x ^ s^1 ^ x^
1. Let x = 3 sec θ, where 0 ≤ θ < π 2 or^ π^ ≤^ θ^ <^
3 π
p 9 sec^2 θ − 9 =
p 9(sec^2 θ − 1) =
9 tan^2 θ
= 3 |tan θ| = 3 tan θ for the relevant values of θ.
x^2
x^2 − 9
dx =
9 sec^2 θ · 3 tan θ
3 sec θ tan θ dθ = 1 9
cos θ dθ = 1 9 sin^ θ^ +^ C^ =
x^2 − 9 x
Note that − sec(θ + π) = sec θ, so the figure is sufficient for the case π ≤ θ < 3 π
3. Let x = 3 tan θ, where − π 2 < θ < π 2. Then dx = 3 sec 2 θ dθ and
p x^2 + 9 =
p 9 tan^2 θ + 9 =
q 9(tan^2 θ + 1) =
9 sec^2 θ
= 3 |sec θ| = 3 sec θ for the relevant values of θ.
x 3 √ x^2 + 9
dx =
3 tan 3 θ 3 sec θ
3 sec 2 θ dθ = 3 3
tan 3 θ sec θdθ = 3 3
tan 2 θ tan θ sec θ dθ
sec 2 θ − 1
tan θ sec θ dθ = 3
u 2 − 1
du [u = sec θ, du = sec θ tan θ dθ]
3 u
3 − u
3 sec
3 θ − sec θ
3
x 2
x^2 + 9 3
1 3
x
2
p x^2 + 9 + C or 1 3
x
2 − 18
¢ p x^2 + 9 + C
5. Let t = sec θ, so dt = sec θ tan θ dθ, t =
2 ⇒ θ = π 4 , and^ t^ = 2^ ⇒^ θ^ =^
π
Z (^2)
√ 2
t^3
t^2 − 1
dt =
Z (^) π/ 3
π/ 4
sec^3 θ tan θ
sec θ tan θ dθ =
Z (^) π/ 3
π/ 4
sec^2 θ
dθ =
Z (^) π/ 3
π/ 4
cos 2 θ dθ
R (^) π/ 3 π/ 4
1 2 (1 + cos 2θ)^ dθ^ =^
1 2
θ + 1 2 sin 2θ
¤π/ 3 π/ 4
1 2
h³ π 3 +^
1 2
√ 3 2
¡ (^) π 4 +^
1 2 ·^1
1 2
π 12 +^
√ 3 4 −^
1 2
π 24 +^
√ 3 8 −^
1 4
7. Let x = 5 sin θ, so dx = 5 cos θ dθ. Then Z 1
x^2
25 − x^2
dx =
52 sin^2 θ · 5 cos θ
5 cos θ dθ
1 25
csc 2 θ dθ = − 1 25 cot^ θ^ +^ C
25 − x^2 x
8 ■ TRIGONOMETRIC SUBSTITUTION
19. Let x = tan θ, where − π 2 <^ θ^ <^
π
2 θ dθ
and
1 + x^2 = sec θ, so Z √ 1 + x^2 x
dx =
sec θ tan θ
sec 2 θ dθ =
sec θ tan θ
(1 + tan 2 θ) dθ
(csc θ + sec θ tan θ) dθ
= ln
1 + x^2 x
x
1 + x^2 1
1 + x^2 − 1 x
1 + x^2 + C
21. Let u = 4 − 9 x 2 ⇒ du = − 18 x dx. Then x 2 = 1 9 (4^ −^ u)^ and
R (^2) / 3 0 x
4 − 9 x^2 dx =
4
1 9 (4^ −^ u)u
1 18
du = 1 162
0
4 u 1 / 2 − u 3 / 2
du
1 162
h 8 3 u
3 / 2 − 2 5 u
5 / 2
i 4
0
1 162
64 3 −^
64 5
64 1215
Or: Let 3 x = 2 sin θ, where − π 2 ≤^ θ^ ≤^
π
23. 5 + 4x − x 2 = −(x 2 − 4 x + 4) + 9 = −(x − 2) 2 + 9. Let
x − 2 = 3 sin θ, − π 2 ≤ θ ≤ π 2 , so dx = 3 cos θ dθ. Then R √ 5 + 4x − x^2 dx =
R p 9 − (x − 2)^2 dx =
R p 9 − 9 sin 2 θ 3 cos θ dθ
=
9 cos^2 θ 3 cos θ dθ =
9 cos 2 θ dθ
= 9 2
(1 + cos 2θ) dθ = 9 2
θ + 1 2 sin 2θ
9 2 θ^ +^
9 4 sin 2θ^ +^ C^ =^
9 2 θ^ +^
9 4 (2 sin^ θ^ cos^ θ) +^ C
sin − 1
μ x − 2 3
x − 2 3
5 + 4x − x^2 3
sin − 1
μ x − 2 3
(x − 2)
5 + 4x − x^2 + C
25. 9 x^2 + 6x − 8 = (3x + 1) 2 − 9 , so let u = 3x + 1, du = 3dx. Then
dx √ 9 x^2 + 6x − 8
√^3 du u^2 − 9
. Now
let u = 3 sec θ, where 0 ≤ θ < π 2 or^ π^ ≤^ θ^ <^
3 π
u^2 − 9 = 3 tan θ, so
Z (^1) 3 du √ u^2 − 9
sec θ tan θ dθ 3 tan θ
1 3
sec θdθ = 1 3 ln|sec^ θ^ + tan^ θ|^ +^ C^1 =^
1 3 ln
u +
u^2 − 9 3
3 ln
¯u^ +^
p u^2 − 9
1 3 ln
¯^3 x^ + 1 +^
p 9 x^2 + 6x − 8
27. x 2 + 2x + 2 = (x + 1) 2 + 1. Let u = x + 1, du = dx. Then
Z dx
(x^2 + 2x + 2)
du
(u^2 + 1)
sec 2 θdθ sec^4 θ
where u = tan θ, du = sec 2 θ dθ, and u^2 + 1 = sec^2 θ
cos 2 θ dθ = (^12)
(1 + cos 2θ) dθ = 12 (θ + sin θ cos θ) + C
tan − 1 u +
u 1 + u^2
tan − 1 (x + 1) +
x + 1 x^2 + 2x + 2
10 ■ TRIGONOMETRIC SUBSTITUTION
= ln |csc θ − cot θ| + sec θ + C [by Exercise 39 in Additional Topics: Trigonometric Integrals ]
29. Let u = x 2 , du = 2x dx. Then
R x
1 − x^4 dx =
1 − u^2
1 2 du
1 2
cos θ · cos θ dθ
where u = sin θ, du = cos θ dθ,
and
1 − u^2 = cos θ
1 2 (1 + cos 2θ)dθ^ =^
1 4 θ^ +^
1 8 sin 2θ^ +^ C^ =^
1 4 θ^ +^
1 4 sin^ θ^ cos^ θ^ +^ C
= 1 4 sin
− 1 u + 1 4 u
1 − u^2 + C = 1 4 sin
− 1 (x 2 ) + 1 4 x
2
1 − x^4 + C
31. (a) Let x = a tan θ, where − π 2 <^ θ^ <^
π
x^2 + a^2 = a sec θ and
dx √ x^2 + a^2
a sec 2 θ dθ a sec θ
sec θ dθ = ln|sec θ + tan θ| + C 1 = ln
x^2 + a^2 a
x a
= ln
x +
p x^2 + a^2
(b) Let x = a sinh t, so that dx = a cosh t dt and
x^2 + a^2 = a cosh t. Then Z dx √ x^2 + a^2
a cosh t dt a cosh t
= t + C = sinh
− 1 x a
33. The average value of f(x) =
x^2 − 1 /x on the interval [1, 7] is
1 7 − 1
1
x^2 − 1 x
dx =
Z (^) α
0
tan θ sec θ
· sec θ tan θ dθ
where x = sec θ, dx = sec θ tan θ dθ, √ x^2 − 1 = tan θ, and α = sec − 1 7
1 6
R (^) α 0 tan
2 θ dθ = 1 6
R (^) α 0 (sec
2 θ − 1) dθ
h tan θ − θ
iα
0
= 16 (tan α − α)
1 6
48 − sec − 1 7
35. Area of 4 P OQ = 12 (r cos θ)(r sin θ) = 12 r 2 sin θ cos θ. Area of region P QR =
R (^) r r cos θ
r^2 − x^2 dx.
Let x = r cos u ⇒ dx = −r sin u du for θ ≤ u ≤ π
r^2 − x^2 dx =
r sin u (−r sin u) du = −r^2
sin^2 u du = − 12 r^2 (u − sin u cos u) + C
1 2 r
2 cos − 1 (x/r) + 1 2 x^
p r^2 − x^2 + C
so
area of region P QR = 1 2
h −r
2 cos
− 1 (x/r) + x
p r^2 − x^2
ir
r cos θ
= (^12)
−r 2 θ + r cos θ r sin θ
= 12 r 2 θ − 12 r 2 sin θ cos θ
and thus, (area of sector P OR) = (area of 4 P OQ) + (area of region P QR) = 1 2 r
2 θ.
TRIGONOMETRIC SUBSTITUTION ■ 11