Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Table of Derivatives, Study notes of Differential and Integral Calculus

Throughout this table, a and b are given constants, independent of x and C is an arbitrary constant. f(x). F(x) = ∫ f(x) dx af(x) + bg(x).

Typology: Study notes

2021/2022

Uploaded on 09/27/2022

raimond
raimond 🇬🇧

4.8

(8)

216 documents

1 / 4

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Table of Derivatives
Throughout this table, aand bare constants, independent of x.
F(x)F0(x) = dF
dx
af(x) + bg(x)af 0(x) + bg0(x)
f(x) + g(x)f0(x) + g0(x)
f(x)g(x)f0(x)g0(x)
af(x)af 0(x)
f(x)g(x)f0(x)g(x) + f(x)g0(x)
f(x)g(x)h(x)f0(x)g(x)h(x) + f(x)g0(x)h(x) + f(x)g(x)h0(x)
f(x)
g(x)
f0(x)g(x)f(x)g0(x)
g(x)2
1
g(x)g0(x)
g(x)2
fg(x)f0g(x)g0(x)
1 0
a0
xaaxa1
g(x)aag(x)a1g0(x)
sin xcos x
sin g(x)g0(x) cos g(x)
cos xsin x
cos g(x)g0(x) sin g(x)
tan xsec2x
csc xcsc xcot x
sec xsec xtan x
cot xcsc2x
exex
eg(x)g0(x)eg(x)
ax(ln a)ax
ln x1
x
ln g(x)g0(x)
g(x)
logax1
xln a
arcsin x1
1x2
arcsin g(x)g0(x)
1g(x)2
arccos x1
1x2
arctan x1
1+x2
arctan g(x)g0(x)
1+g(x)2
arccsc x1
x1x2
arcsec x1
x1x2
arccot x1
1+x2
pf3
pf4

Partial preview of the text

Download Table of Derivatives and more Study notes Differential and Integral Calculus in PDF only on Docsity!

Table of Derivatives

Throughout this table, a and b are constants, independent of x.

F (x) F ′(x) = dF dx af (x) + bg(x) af ′(x) + bg′(x) f (x) + g(x) f ′(x) + g′(x) f (x) − g(x) f ′(x) − g′(x) af (x) af ′(x) f (x)g(x) f ′(x)g(x) + f (x)g′(x) f (x)g(x)h(x) f ′(x)g(x)h(x) + f (x)g′(x)h(x) + f (x)g(x)h′(x) f g ((xx)) f ′(x)g(x g)(−xf) 2 (x)g′(x) g(^1 x) −^ gg(′(xx))^2 f (g(x))^ f ′(g(x))g′(x) 1 0 a 0 xa^ axa−^1 g(x)a^ ag(x)a−^1 g′(x) sin x cos x sin g(x) g′(x) cos g(x) cos x − sin x cos g(x) −g′(x) sin g(x) tan x sec^2 x csc x − csc x cot x sec x sec x tan x cot x − csc^2 x ex^ ex eg(x)^ g′(x)eg(x) ax^ (ln a) ax ln x (^1) x ln g(x) g g′((xx)) loga x (^) x ln^1 a arcsin x √ 11 −x 2 arcsin g(x) √ 1 g−′(gx()x) 2 arccos x − √ 11 −x 2 arctan x (^) 1+^1 x 2 arctan g(x) (^) 1+g′g((xx)) 2 arccsc x − (^) x√ 11 −x 2 arcsec x (^) x√ 11 −x 2 arccot x − (^) 1+^1 x 2

Table of Indefinite Integrals

Throughout this table, a and b are given constants, independent of x and C is an arbitrary constant. f (x) F (x) = ∫^ f (x) dx af (x) + bg(x) a ∫^ f (x) dx + b ∫^ g(x) dx + C f (x) + g(x) ∫^ f (x) dx + ∫^ g(x) dx + C f (x) − g(x) ∫^ f (x) dx − ∫^ g(x) dx + C af (x) a ∫^ f (x) dx + C u(x)v′(x) u(x)v(x) − ∫^ u′(x)v(x) dx + C f (y(x))y′(x) F (y(x))^ where F (y) = ∫^ f (y) dy 1 x + C a ax + C xa^ x aa+1+1 + C if a 6 = − 1 (^1) x ln |x| + C g(x)ag′(x) g(x a+1)a+1 + C if a 6 = − 1 sin x − cos x + C g′(x) sin g(x) − cos g(x) + C cos x sin x + C tan x ln | sec x| + C csc x ln | csc x − cot x| + C sec x ln | sec x + tan x| + C cot x ln | sin x| + C sec^2 x tan x + C csc^2 x − cot x + C sec x tan x sec x + C csc x cot x − csc x + C ex^ ex^ + C eg(x)g′(x) eg(x)^ + C eax^1 a eax^ + C ax^ ln^1 a ax^ + C ln x x ln x − x + C √ 11 −x 2 arcsin x + C √^ g′(x) 1 −g(x)^2 arcsin^ g(x) +^ C √a (^21) −x 2 arcsin x a + C 1+^1 x^2 arctan^ x^ +^ C 1+^ g′g((xx))^2 arctan^ g(x) +^ C a^2 +^1 x^21 a arctan^ x a +^ C x√ 11 −x^2 arcsec^ x^ +^ C

Properties of Logarithms

In the following, x and y are arbitrary real numbers that are strictly bigger than 0, a is an arbitrary constant that is strictly bigger than one and e is 2.7182818284, to ten decimal places.

  1. eln^ x^ = x, aloga^ x^ = x, loge x = ln x, loga x = ln ln^ xa
  2. loga^ (ax)^ = x, ln (ex)^ = x ln 1 = 0, loga 1 = 0 ln e = 1, loga a = 1
  3. ln(xy) = ln x + ln y, loga(xy) = loga x + loga y
  4. ln (^ x y^ )^ = ln x − ln y, loga^ (^ x y^ )^ = loga x − loga y ln (^1 y^ )^ = − ln y, loga^ (^ y^1 )^ = − loga y,
  5. ln(xy) = y ln x, loga(xy) = y loga x
  6. d dx ln x = (^) x^1 , d dx ln(g(x)) = g g′((xx)) , d dx loga x = (^) x ln^1 a
  7. ∫^ x^1 dx = ln |x| + C, ∫^ ln x dx = x ln x − x + C
  8. (^) xlim→∞ ln x = ∞, lim x→ 0 ln x = −∞ x^ lim→∞ loga^ x^ =^ ∞, lim x→ 0 loga^ x^ =^ −∞
  9. The graph of ln x is given below. The graph of loga x, for any a > 1, is similar.

x

y

y = ln x