Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Stress Transformation: Understanding and Calculating Stresses - Prof. Gonzales, Exercises of Rhetoric

A detailed explanation of stress transformation, a fundamental concept in mechanics of materials. It covers the derivation of formulas for calculating normal and shear stresses at any angle, along with illustrative examples. Particularly useful for students studying mechanics of materials or related engineering disciplines.

Typology: Exercises

2020/2021

Uploaded on 10/08/2024

ice-play-360
ice-play-360 🇺🇸

1 document

1 / 23

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
1
Esfuerzos Principales y
Transformación de
Esfuerzos
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17

Partial preview of the text

Download Stress Transformation: Understanding and Calculating Stresses - Prof. Gonzales and more Exercises Rhetoric in PDF only on Docsity!

Esfuerzos Principales y

Transformación de

Esfuerzos

  • Esfuerzos en Secciones Inclinadas (Demostración) P P (^) P P P P

1

𝜎 𝜎

𝐴cosθ

y

𝐴senθ

𝜎𝑥

A 𝜏 𝑥𝑦

A 𝜏 𝑥𝑦𝐴cosθ 𝜏 𝑦𝑥Asenθ Fuerzas

𝑥 ′ 𝑦 ′

𝜎𝑥

A 𝜏 𝑥𝑦

A

y

𝐴senθ

𝐴cosθ

𝜏 𝑦𝑥Asenθ 𝜏 𝑥𝑦𝐴cosθ D.C.L 𝑦 𝑥

′ = 𝜎𝑥cos 2 θ + 𝜎ysen 2 θ + 2 𝜏𝑦𝑥senθcosθ Igualdades Trigonométricas cos

θ = 1 + cos 2 θ

sen

θ = 1 − cos 2 θ

sen 2 θ = 2 senθcosθ

′ = 𝜎𝑥cos 2 θ + 𝜎ysen 2 θ + 2 𝜏𝑦𝑥senθcosθ

cos

y

sen

senθcosθ

𝜎𝑥 ′ = 𝜎 𝑥 ( 1 + cos 2 θ 2 ) + 𝜎 y ( 1 − cos 2 θ 2 ) + 𝜏 𝑦𝑥 sen 2 θ 𝜎𝑥 ′ = ( 𝜎𝑥 2 ) + ( 𝜎𝑥cos 2 θ 2 ) + ( 𝜎y 2 ) − ( 𝜎ycos 2 θ 2 ) + 𝜏 𝑦𝑥 sen 2 θ

y

y

)cos 2 θ + 𝜏

sen 2 θ

Evaluar esfuerzo normal a cualquier ángulo (Fórmula)

𝛴𝐹𝑦 ′ = 0 0 = 𝜏 𝑥𝑦 ′ A + 𝜎𝑥𝐴cosθsenθ − 𝜎y𝐴senθcosθ + 𝜏𝑦𝑥Asenθsenθ − 𝜏𝑥𝑦Acosθcosθ 𝜏 𝑥𝑦 ′ A = −𝜎𝑥𝐴cosθsenθ + 𝜎y𝐴senθcosθ − 𝜏𝑦𝑥Asenθsenθ + 𝜏𝑥𝑦Acosθcosθ 𝜏 𝑥𝑦 ′ A = (𝐴) − 𝜎𝑥cosθsenθ + 𝜎ysenθcosθ − 𝜏𝑦𝑥senθsenθ + 𝜏𝑥𝑦cosθcosθ 𝜏 𝑥𝑦 ′ = −𝜎𝑥cosθsenθ + 𝜎ysenθcosθ − 𝜏𝑦𝑥senθsenθ + 𝜏𝑥𝑦cosθcosθ 𝜏 𝑥𝑦

𝑥cosθsenθ^ +^ 𝜎ysenθcosθ^ −^ 𝜏𝑦𝑥sen 2 θ + 𝜏𝑥𝑦cos 2 θ

𝑥𝑦 ′ = −𝜎𝑥cosθsenθ + 𝜎ysenθcosθ − 𝜏𝑦𝑥sen 2 θ + 𝜏𝑥𝑦cos 2 θ Igualdades Trigonométricas cos

θ = 1 + cos 2 θ

sen

θ = 1 − cos 2 θ

sen 2 θ = 2 senθcosθ

Esfuerzos Principales (Fórmulas Importantes)

Esfuerzos Principales (Ejemplos Sencillos)

  • Ejemplo