Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Statistical mechanics, Study notes of Physics

Notes for statistical mechanics

Typology: Study notes

2021/2022

Uploaded on 04/25/2025

intoxicant-perfumes
intoxicant-perfumes 🇮🇳

1 document

1 / 159

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f
pf40
pf41
pf42
pf43
pf44
pf45
pf46
pf47
pf48
pf49
pf4a
pf4b
pf4c
pf4d
pf4e
pf4f
pf50
pf51
pf52
pf53
pf54
pf55
pf56
pf57
pf58
pf59
pf5a
pf5b
pf5c
pf5d
pf5e
pf5f
pf60
pf61
pf62
pf63
pf64

Partial preview of the text

Download Statistical mechanics and more Study notes Physics in PDF only on Docsity!

P 4 “a cn SICS-C XIV: STATISTICAL MECHANICS Tedits: Theory-04, Practicals-02) Theory: 60 Lectures Classical Statistics: Macrostate and Microstate, Phase Space, Elementary Concept of Ensemble, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy (with proof)- Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature. (18 Lectures) Classical Theory of Radiation: Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Radiation Pressure. Kirchhoff’s law. Stefan-Boltzmann law: Thermodynamic proof. Wien’s Displacement law. Wien’s Distribution Law. Saha’s Tonization Fonnula. Rayleigh-Jean’s Law. Ultraviolet Catastrophe. (9 Lectures) Quantum Theory of Radiation: Spectral Distribution of Black Body Radiation. Planck’s Quantum Postulates. Planck’s Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien’s Distribution Law, (2) Rayleigh-Jeans Law, (3) Stefan-Boltzmann Law, (4) Wien’s Displacement law from Planck’s law. (5 Lectures) Bose-Einstein Statistics: B-E distribution law, Thermodynamic functions of a strongly Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas. Bose derivation of Planck’s law. (13 Lectures) Fermi-Dirac Statistics: Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas ina Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit. (15 Lectures) Llassical Alatistcs. fay aah ‘ Hu Ye tt , ULM rd explain by “ 4 eee Se ee ae but for clean | Lae eae Ths te want’ cathe a nn problyr. 4, Atesysiod muchout jen 3 ey I, fet Mechonies & te bawch of seeder wttel indeapret or es an poles Se gs oe Gq pebebiy: T) To ssivg Hn olistingaLis hoble (ein pie krow for cow | tein = No. q Ablonas = =2 for 2am = 4H tor Zan = & outcry 2). New we fhetice of Aad dw oan | healt. Evert _ Event tol toim2 = ton BNO of Mags. Puobablity Znead bal La} H 4 Ye 2 Weak H H T 4 T H 3 39a T H H Wook K T T : i 4 T Ss 3/8 T i H rn Head Tv — il = NI for | Huow 1) (N-n)) dn Gorunal Uys _N! nil 12) ng) ----- Mel Ske = NI J Th "e! ates EY Mactocdale . Mictestade :. A Microb 6 Micros tak a 4 Apeci}icol by He wii has topic feces “ty igor. vo order fo Apecify 2 mMiltetlede ne hove fo Repo how ifinguithele Farbichs: Af tuo jolie A LB ote jwduchapug Di lia tha dem aca ancl ase Aetult ure qt a mau Adede . Than the posticla aw fais to be Srolistingulshable fastela: I} tuo parbilu APB ou Vaterchogig dart by Sd) _D Sf tee Syters a am Cgpullbian Hen att ae ae how Maxi mown no. of wu re Uling is Afpcoxlwastcry -pormte. ee ages. | Hts apportion fo frurol re dacdonat of sal? ”. trample of a finite Auk Aylin tla Ww ; N= 3 magiude Atpolis fossible cee y41 1 Wty Wh My wr Wy . Seen aay: (Macostades ) 3h be - By. (Novel tbls Il to B) Tohed Macesstate | Novas micuastade Hag. Kousck Mittertte, 3 ve 3p 2 3 m 9 4 3 ” (o) 4 Lae Todat . No. q micteslely, a ae g \ N> occdlelos J lw, 6) = (€+Nn-!) > 4, GC El (N-1)) Ex Entegy am Jur, No of MiceethA. Merepitedt Pasticlan 1D ¢% Px) 2 dim. Particly tm 20 (my,brby) 4 Pim Peake ain 3S Cn Y,2,buby bz) 6 kur. * iN i) Ix} 4 . Mt paticl WZ [or 4x L » x U———-> Ma Chaisitas Mebowet uQ. P Ky bust a an aun) (L) 4. Pasticl, 2» | ollm Conia a particle Aas wrometin (o? ernriols a Aight neotrew roa bh Constanta in SID devgtt Lx am J ugg luc kow E= P a tnt wis a’ p=4/amE — Nov of Medes = Todas Aer th Aucaof tat sak. | _ fet} ————— = fine Lx Density © 3 ot Hy no-of Blakes PU Unit PS Pos gee heed gpap> ALxat Poe > 4e= Pd? Ee) dé =Alx [wm a - a TR iat = Q = ze AP fie> ee A | % fyoee = 2b ft oee sie a mie Ly qisws total Ada GlOdE = Ru - “oe Avy ure ame te hb g(BlE= DV~ dn amy Erde 3 Sen comparing i- Dol, « (WO! go * 1€ Dray oe Me) qo wand tla, * (@) gox« Ye WF ‘ aps [md Na a exec re Azlas ti toy ec’ d=? 2D \d €— A pastel un I-dD of was 1) tending Ahuple hy Rew Es Leyr+ e 2 am Pn Pr xt od Sg of Elupts Ame ek Aua a clupy = TK ob KM [fiw x (Phan cea) = 7 (Bme) V2 ! = Xr Zz J = “A . ane Mw h h R ve = I7%6é hw ; A od © Nous contious tte finde tf a hosing Cutoptes Sj; & Sr Ao, Se Sy + So —_— , Bs hew Hak Hy probably ym Ramet ta ong - 1, of tw probablidrcy ‘4 fhe jvodiuclal [ro Crest Ne Nye Se \3) Alt S= 4(2) = $(, Iu) — (") Loom (1) As= 4) , S? 4) oe ® Probably «f ais meee uM jet @vdwey : it vacuatoh VitVe fanrel 2 Toltak Gos Mosk (Nie As = Sy = Sj ies 5 tuiad Rin te _ Rinty N, _ Inf)” = k In (Se = k | vi) 4S = \inlw y" ——= (7) Vyitve, hae brows Sabres cree 4 Jan ly. = WinTe + Rn[ Vite As. = om Ee + n( bee) tor oda T= Tr . -k ) _ \v ( Vi ) —_?2) = N 4 ~ AS Rin (=x VitVe NA (k= 38.xh74 ik] fom W) L@ R= NeR |k - Bo) aitte man’s lonsdowt Lomeckion b]w Thundgvarics & Sdebict' ul) Mechorees “et krows S$ (6V,N) = In LCE, WN) das = \2¢) ae + oe Grew VN Theo £2 ae iain [ae= Tas -Pav + pAN * Levsidu a Ayton Coleulode Speopen beat 3 2) _ a(n (Fin) ve Te al 4 E, Pp = NRT _ : N iat : E . ea Cm CRY Dy, = 7° 3t y= kite [E- (wer) 4] = sl NN -ninn —(N-n) WN - @-n) (-8)] ro ky NiyAt nbn -N)AAl + nln — (N-») Wn('- a) = MT m bn _ (nn) In (1-2) | = Kf mma, - wt Ben) h('-)| JP ==NkE wha) + (aye('-A)] | — © Sy Terabrractat. + Gélvn ” Ge) Ge) As} Up postr uirh, US) nue gt | 2s = Rk [e - (minn)' -((@-") inew-r)) | nea) = k [ = les: + tn -(S2 (-1) + aaa = RE ~tew A +44 ninn} 3S = Kk In (7) from (2) we home a * = —p6(2n-N) bey _ n- & = Kin(") (Sa SE ke eee a fs 0 shan gk Inf“ L = ONT. ze al - E—& ee (wm) nei(N - 5 ) en: AW an wa gt ous af ne, oli: al n( N- €/uB T 2pB N+ €/pG 2pB x In ( N- clus) t RT N+ Em’ Nug —-E oe Thee Np + E pplying ch Auk N b6 i " PMI RT |) T Npe-E + NPRTE _é + NpR-E— NEE CeBIT) | -Nps 2B _ ¢e2MB/kT,, | —2E e2MG/RT_ | 2¢6/ kT E = Np@/l-é ) 1) + 2 2MS/ RT E (a5) = —-Npe@ ( e hele | =) eMOlKr e HSinr [Eo ns tas RT cv ) = = —NpSs edi =) a, ci) kT ——_{(3) |? Ge NR (uh) Ach” (BB uy NED) yT -ve \e foptition Juhi N) —> thas fo achint —ve Temp more thom of te Meophols Ahowlol be avtiparaldl PR ix Reputation —Inverton occus, rte kead S> Rink = k(NInN-“n _ [w-n) n(N-»)] Atzero Suegry E=0 n=N N-n = 0 S= RInz2 Sncatoding a of hethecd . FOK ____.. Book - _: too _------SmK ~-~-- -o (coldsst) | (retest) — _eted ier G=-H5 &=p6 Fopulsheon Ny wy! Ww ape € ° £ feat Pf tae hte N;>N2 Ao T>O Ny now Aubert ae dali of ths i. ald & Avatdandy Anna Hun Hu mmagite bir Ou aa ats qt ae Mh ts le = opt eb, ( €, - E\ Inn, = Jy Na! NOSe NI gal so TSO FO Sena nao see crue geen Ham ty Lea tls Hue temp. mud be notes thon Infinity _ obtolute Tempuadert, Condade, toy ochusting ve 1) The Austin pnd — hoase upper _ pene 2) $t wut be mm thawal Cyuliiven =" Dg muck hase ve Tome Ales isladed Feouspnahin dod, vnwwll Lain K Mivesiak fo (Nem degra re |euls ) bo be dishabeded conicdy tute ee bo, 6) &be fry Ne ek man dager. en aw Ome, €0 é1 En N= 3! o 3. ab c = a) i) ol os ub ot. bc ae They wt com gameralis 8 a | fee jst ML wo] Mal ~~