Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

STAT 3220 Midterm 1 Introduction To Regression Analysis 2025/2026 Question With Complete D, Exams of Data Analysis & Statistical Methods

STAT 3220 Midterm 1 Introduction To Regression Analysis 2025/2026 Question With Complete Detailed Answers A Plus Score.

Typology: Exams

2024/2025

Available from 07/11/2025

drillmaster
drillmaster 🇺🇸

5

(5)

944 documents

1 / 6

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
STAT 3220 Midterm 1 Introduction To
Regression Analysis 2025/2026
Question With Complete Detailed
Answers A Plus Score.
100% CORRECT
simple linear regression model
assumes that the relationship between the dependent variable and the independent variable can be
approximated by a straight line
y = β₀+β₁x+ε
it is reasonable to describe the relationship between y and x by using the simple linear regression model
if...
the y values tend to inc or dec in a straight-line fashion as the x values inc
dependent variable
response, y
independent variable
predictor, x
pf3
pf4
pf5

Partial preview of the text

Download STAT 3220 Midterm 1 Introduction To Regression Analysis 2025/2026 Question With Complete D and more Exams Data Analysis & Statistical Methods in PDF only on Docsity!

STAT 3220 Midterm 1 Introduction To

Regression Analysis 2025/

Question With Complete Detailed

Answers A Plus Score.

100% CORRECT

simple linear regression model

assumes that the relationship between the dependent variable and the independent variable can be approximated by a straight line

y = β₀+β₁x+ε

it is reasonable to describe the relationship between y and x by using the simple linear regression model if...

the y values tend to inc or dec in a straight-line fashion as the x values inc

dependent variable

response, y

independent variable

predictor, x

μ(y|x)=β₀+β₁

  • mu of y given x
  • a y-intercept of Beta zero and a slope of Beta one
  • aka "line of means"
  • the mean value of y when the value of independent variable is x

ε

error term, epsilon

describes the effect on y of all factors other than the actual x variable

time series data

when data are observed in time sequence

cross-sectional data

data observed at a single point in time

least squares prediction equation

y-hat = b₀+b₁x

mean value

the average of all the values of the dependent variable that could potentially be observed when the independent variable equals a particular value

simple coefficient of determination

a measure of the usefulness of a simple linear regression model

total variation

  • the sum of squared prediction errors obtained when we do not employ the predictor variable x
  • measures total amt of variation exhibited by the observed values of y

unexplained variation

SSE

  • the sum of squared prediction errors obtained when we use the predictor variable x
  • measures amt of variation in the values of y that is not explained bu the predictor variable

explained variation

total variation - unexplained variation

= explained variation/total variation

  • the variation explained by the simple linear regression model

simple correlation coefficient

r

point estimate of rho

measures the strength of the linear relationship between y and x

population correlation coefficient

ρ (rho)

all possible combinations of observed values of x and y

H₀: ρ=0 vs Ha: ρ≠

there is no linear relationship between x and y vs there is a linear relationship between x and y

F-test

H₀: β₁=0 vs Ha: β₁≠

testing the significance of the simple linear regression model