Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Major Quiz 2 Answers: Derivative Problems, Quizzes of Calculus

Answers to major quiz problems related to finding derivatives of various functions using the definition of derivative and applying theorems.

Typology: Quizzes

Pre 2010

Uploaded on 08/04/2009

koofers-user-uzl
koofers-user-uzl 🇺🇸

10 documents

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
MA140-01
2/8/09 Major Quiz 2 Review Problems Answers
1.) Find
dx
dy
for each of the following.
(a) y = 3x
3
5x
2
+ 4x +13 (b) y = 3(x
5
+ 2x
4
) (c)
2
3
3
5
x
x
y+=
2
9 10 4
dy
x x
dx
= +
4 3
dy
x x
dx
=
2
3
3 6
5
dy x
dx x
=
(d)
54
23
x
x
y
=
(e)
2
1
2
1
2
1
2
= xxy (f)
1
44
2
+
=
x
xx
y
5 6
12 10
dy
dx x x
= +
3
1 1
4
dy
dx
x x
= +
2
2
(2 4)( 1) ( 4 4)(1)
( 1)
dy x x x x
dx x
+
=
(g) y = (4x
2
1)(2x
3
+ x + 5) (h)
1
1
3
3
+
=
x
x
y (i) y = (2x
4
3x)(5x
2
2x + 5)
3 2 2
(8 )(2 5) (4 1)(6 1)
dy
x x x x x
dx
= + + + +
2 3 3 2
3 2
(3 )( 1) ( 1)(3 )
( 1)
dy x x x x
dx x
+
=
3 2 4
(8 3)(5 2 5) (2 3 )(10 2)
dy
x x x x x x
dx
= + +
(j)
6
3
2
+
=
x
x
y (k) y =
5
2
13
+
x
x (l) y =
2
3
4
5
4
3
5
3
3
2
x
x
x
x+
3 2 2
3 2
(2 )( 6) ( )(3 )
( 6)
dy x x x x
dx x
+
=+
2
(3)(2 5) (2)(3 1)
(2 5)
dy x x
dx x
+
=+
4 2
5 3
10 12 3 3
3 5 2
dy
x x
dx x x
= + +
2.)
Use the definition of derivative to find f'(x) for f(x) = 3x
2
+ 5x 1.
0
( ) ( )
lim
h
f x h f x
h
+
2 2
0
3( ) 5( ) 1 (3 5 1)
lim
h
x h x h x x
h
+ + + +
2 2 2
0
3 6 3 5 5 1 3 5 1
lim
h
x xh h x h x x
h
+ + + + +
3.)
Prove the following theorem.
"If
f
and
g
are functions and if k is the function defined by
( ) ( ) ( )
k x f x g x
= +
then if
'( )
f x
and
'( )
g x
exist,
'( ) '( ) '( )
k x f x g x
= +
."
0 0
( ) ( ) ( ) ( ) [ ( ) ( )]
'( ) lim lim
h h
k x h k x f x h g x h f x g x
k x
h h
+ + + + +
= =
0
( ) ( ) ( ) ( )
lim
h
f x h f x g x h g x
h
+ + +
0
( ) ( ) ( ) ( )
lim
h
f x h f x g x h g x
h h
+ +
= +
0 0
( ) ( ) ( ) ( )
lim lim
h h
f x h f x g x h g x
h h
+ +
= +
'( ) '( )
f x g x
= +
2
0
6 3 5
lim
h
xh h h
h
+ +
0
(6 3 5)
lim
h
h x h
h
+ +
6 5
x
+
pf3
pf4
pf5

Partial preview of the text

Download Major Quiz 2 Answers: Derivative Problems and more Quizzes Calculus in PDF only on Docsity!

2/8/09 Major Quiz 2 Review Problems Answers

1.) Find dx

dy for each of the following.

(a) y = 3x^3 − 5x^2 + 4x +13 (b) y = −3(x^5 + 2x^4 ) (c) (^) 2

(^5) x

x y = +

2

dy

x x

dx

4 3

dy

x x

dx

2

3

dy x

dx x

(d) (^) 4 5

x x

y = − (e)^2

1 2

1

2

y = xx (f) 1

x

x x y

5 6

dy 12 10

dx x x

dy

dx x x

2 2

dy x x x x

dx x

(g) y = (4x^2 − 1)(2x^3 + x + 5) (h) 1

3

3

x

x y (i) y = (2x^4 − 3x)(5x^2 − 2x + 5)

dy (8 )(2 x x 3 x 5) (4 x 2 1)(6 x 2 1)

dx

2 3 3 2

3 2

(3 )( 1) ( 1)(3 )

( 1)

dy x x x x

dx x

− − +

dy (8 x 3 3)(5 x 2 2 x 5) (2 x 4 3 )(10 x x 2)

dx

(j) (^36)

2

x

x y (k) y = 2 5

x

x (l) y = (^2)

3 4

5 4

x

x x

x − + − 3 2 2

3 2

(2 )( 6) ( )(3 )

( 6)

dy x x x x

dx x

  • − =

2

(3)(2 5) (2)(3 1)

(2 5)

dy x x

dx x

  • − − =

4 2 5 3

dy

x x

dx x x

2.) Use the definition of derivative to find f'(x) for f(x) = 3x^2 + 5x − 1.

0

lim h

f x h f xh

0

lim h

x h x h x xh

2 2 2 0

lim h

x xh h x h x xh

3.) Prove the following theorem.

"If f and g are functions and if k is the function defined by k ( x ) = f ( x ) + g ( x )

then if f '( x )and g '( x )exist, k '( x ) = f '( x ) + g '( x )."

0 0

( ) ( ) ( ) ( ) [ ( ) ( )]

'( ) lim lim h h

k x h k x f x h g x h f x g x k x → (^) hh

0

lim h

f x h f x g x h g xh

0

lim h

f x h f x g x h g xh h

 +^ −^ +^ − 

0 0

lim lim h h

f x h f x g x h g x → (^) hh

 +^ −^   +^ − 

= + = f '( ) x + g '( ) x

2 0

lim h

xh h hh

0

lim h

h x hh

6 x + 5

2/8/09 Major Quiz 2 Review Problems Answers

4.) Find an equation of each of the lines through the point (1, 2) that is tangent to the curve y = 2x^2 + 8.

y ' = 4 x y '(1) = 4(1) = 4 y − 2 = 4( x −1) y = 4 x − 2

5.) Find the values of a and b such that f is differentiable at 2 if f(x) = (^) 

x^2 if x

ax b if x .

The derivative of f when x<2 is a, and 4x when x > 2. For the derivative to exist at 2, the pieces must be equal when x = 2. So, combining the two pieces for x = 2, a = 4(2). So, a = 8. Then, to find b, recall that the function must be continuous if it is going to be differentiable. So, the two pieces must be equal when x = 2. Using that information along with a = 8 and x = 2, then... 8(2) + b = 2(2)^2 - 1. So, b = -9.

6.) Find an equation of the tangent line and normal line to the curve y = 3x^4 − 12x at the point (1, −9).

y ' = 12 x^3 − 12 y '(1) = 12(1)^3 − 12 = 0 y − −( 9) = 0( x −1) y = − 9

7.) Use the definition of derivative to find f'(x) for f(x) = 2x^2 − 3x + 1.

0

lim h

f x h f xh

0

lim h

x h x h x xh

2 2 2 0

lim h

x xh h x h x xh

8.) Find f '( x )for each of the following.

(a) f(x) = 5x^3 + 2x^2 − 3x (b) f(x) = (3x + 5)(2x^2 − 3x +1) (c) f(x) = 3 7

x

x

f '( ) x = 15 x^2 + 4 x − 3 2

f '( ) x = (3)(2 x − 3 x + 1) + (3 x + 5)(4 x −3)

4 5 2

x x x

f x

x

(d) f(x) = (^42)

x x

(e) f(x) = 2 4

x

x

5 3

f '( ) x

x x

2 2

x x x

f x

x

9.) Use the definition of derivative to find f 'for f ( x ) = 3 x^2 − 5.

0

lim h

f x h f xh

0

lim h

x h xh

2 0

lim h

xh h hh

0

lim h

h x hh

4 x − 3

2 0

lim h

xh hh

0

lim h

h x hh

6 x

2 2 2 0

lim h

x xh h xh

2/8/09 Major Quiz 2 Review Problems Answers

17.) Using the position function

s t ( ) 4 tt

= , find the velocity function.

1 s '( ) t = 2 t^ −^2 + 3 t −^2

18.) Below is a graph of f ( ) x. Sketch a graph of f ′( ) x.

19.) Compute the derivative f ‘ ( x ) of

f x x

2 2

x f x x x

20.) Find an equation of the line tangent to f ( ) x = 7 x – 5 x – 5at x = 5. 1 '( ) 7 2 – 5 '(5) 7 – 5 (^2 2 )

f x x f

− =  = If x = 5, f (5) = 7 5 – 30.

y x

21.) Find the derivative of ( ) 2

x + 2 x –5 x + x

2 2

x x x x x

x x

22.) Below is a graph of f ′( ) x. Sketch a graph of a plausible f ( ) x.

23.) Find the derivative of (^2)

x f x x

2 2 2

x x x f x x

2/8/09 Major Quiz 2 Review Problems Answers

24.) Find an equation of the line tangent to h x ( ) = f ( ) x g x ( ) at x = 3 if

f (3) = –3 , f ′(3) = 3 , g (3) = 3 , and g ′(3) = –1. h '( ) x = f '( ) x g x ( ) + f ( ) x g '( ) x h (3) = f (3) g (3) = −( 3)(3) = − 9 h '(3) = f '(3) g (3) + f (3) g '(3)  h '(3) = (3)(3) + −( 3)( 1) − = 12 y − − ( 9) = 12( x −3)

25.) Find an equation of the line tangent to

f x h x g x

= at x = 1 if

f (1) = –3 , f ′(1)^ = –1, g (1) = 1 , and g ′(1)^ = 2.

2

[ ( )]

f x g x f x g x h x g x

f h g

2 2

[ (1)] (1)

f g f g h g

y − − ( 3) = 5( x −1)

26.) Below is a graph of f ′( ) x. Sketch a graph of a plausible f ( ) x.

Answers may vary. Below is one possible answer.

\