Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Precalculus I - Review Sheet for Examination 4 | MATH 161, Exams of Pre-Calculus

Material Type: Exam; Class: Precalculus I; Subject: Mathematics; University: Community College of Philadelphia; Term: Unknown 1989;

Typology: Exams

Pre 2010

Uploaded on 08/19/2009

koofers-user-x1o
koofers-user-x1o 🇺🇸

10 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Math 161 Review for Exam 4
1. Use the graph of the function y = f(x) to draw the graph of its inverse if possible.
(a) (b) (c)
2. Find the inverse function and its domain if possible.
(a) {(2, 4), (3, 5), (3, 7)} (b)
4,3,6,2,9,1
3. Find the inverse function and its domain if possible.
(a)
2
1
x
xf
(b)
xxf
(c)
9/325 xxc
(d)
2
xxf
(e)
xxxf
(f)
0
0
2
xifx
xifx
xf
(g)
xxf
(h)
(i)
23
3xxxf
4. Find a formula for the quadratic function satisfying:
(a) vertex (3, 2), point (1, 6) (b) vertex (1, 2), intercept (0, 3)
5. Identify the vertex, and intercepts of the following quadratic functions.
(a)
94
2
xxxf
(b)
2
9xxf
(c)
156
2
xxxf
6. Find the zeros of the following polynomials and indicate the multiplicity.
(a)
23
4xxxf
(b)
3613
24
xxxf
(c)
1243
23
xxxxf
(d)
42
2
xxxf
(e)
82
2
xxxf
(f)
12
2
xxxf
7. Sketch the graphs of the above polynomials.
8. Divide using long division.
(a)
12513136
23
xxxx
(b)
231031196
23
xxxx
9. Divide using synthetic division.
(a)
41131142
23
xxxx
(b)
385
3
xxx
10. Re-do problem 9 above using long division.
pf3

Partial preview of the text

Download Precalculus I - Review Sheet for Examination 4 | MATH 161 and more Exams Pre-Calculus in PDF only on Docsity!

Math 161 Review for Exam 4

1. Use the graph of the function y = f(x) to draw the graph of its inverse if possible.

(a) (b) (c)

2. Find the inverse function and its domain if possible.

(a) {(2, 4), (3, 5), (3, 7)} (b) ^ ^1 , 9 ^ ,^2 , 6 ^ ,^3 , 4 

3. Find the inverse function and its domain if possible.

(a) ^ ^

x

f x (b) f  x   x (c) c  x   5  x  32  / 9

(d) ^ ^

f xx^2

(e) f^ ^ x ^ ^ xx (f) ^ ^

x^2 ifx x if x f x

(g) f^ ^ x ^ ^ ^ x  (h) ^ ^1

f xx^3 

(i) ^ ^

f xx^3  3 x^2

4. Find a formula for the quadratic function satisfying:

(a) vertex (3, 2), point (1, 6) (b) vertex (1, 2), intercept (0, 3)

5. Identify the vertex, and intercepts of the following quadratic functions.

(a) ^ ^49

f xx^2  x

(b) ^ ^

f x  9  x^2

(c) ^ ^615

f xx^2  x

6. Find the zeros of the following polynomials and indicate the multiplicity.

(a) f^ ^ x ^  x^3 ^4 x^2 (b) f^ ^ x ^ ^ x^4 ^13 x^2 ^36 (c) f ^ x ^ ^ x^3 ^3 x^2 ^4 x ^12

(d) f^ ^ x ^ ^ x^2 ^2 x ^4 (e) f^ ^ x ^ ^ x^2 ^2 x ^8 (f) f ^ x ^ ^ x^2 ^2 x ^1

7. Sketch the graphs of the above polynomials.

8. Divide using long division.

(a)  6 x^3  13 x^2  13 x  5   2 x  1  (b)  6 x^3  19 x^2  31 x  10   3 x  2 

9. Divide using synthetic division.

(a) ^2 143111 ^ ^4 

x^3  x^2  x   x

(b) ^58 ^ ^3 

x^3  x   x

10. Re-do problem 9 above using long division.

Math 161 Answers to Review for Exam 4

1.(a) (b) (c) no inverse

2.(a) not a function (b) inverse {(9, 1), (6, 2), (4, 3)}, domain {9, 6, 4}

3.(a) ^ ^

x

f x 2 1

1

, domain {x: x  0} (b) ^ ^

f ^1 xx^2

, domain {x: x  0}

(c) c ^1  x  ^95 x  32 , domain  (d) no inverse

(e) ^ ^

         0 1 0 x if x x if x

f x , domain  (f)  

x if x x if x

f x , domain 

(g) no inverse (h) f ^1  x  ^3 x  1 , domain  (i) no inverse

4.(a) ^ ^ ^3 ^2

f xx ^2 

(b) ^ ^ ^1 ^2

f xx ^2 

5.(a) vertex (2, 5), intercept (0, 9). (b) vertex (0, 9), intercepts (0, 9), ( 3, 0).

(c) vertex (3, 24), intercepts (0, 15),  3  2 6 , 0 

6.(a) 0 with multiplicity 2, 4 with multiplicity 1 (b)  3,  2, each with multiplicity 1

(c)  2,  3, each with multiplicity 1 (d) none

(e)  2, 4, each with multiplicity 1 (f) 1 with multiplicity 2