Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Physics formula sheet, Lecture notes of Physics

Formula sheet for physics that I used in first year uni.

Typology: Lecture notes

2019/2020

Uploaded on 05/29/2020

ace_2001
ace_2001 🇨🇦

5

(2)

1 document

1 / 7

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Formula Sheet: Physics 220 A. Carmichael
Position, velocity and acceleration
x/t=vav v/t=aav
dx/dt =v(t)dv/dt =a(t)
Za(t)dt = vZv(t)dt = x
Uniformly accelerated motion
v=v0+at x =x0+v0t+1
2at2
v2=v2
0+ 2a(xx0)x=x0+v0+v
2t
Projectile motion 2D (uniform field g=const.)
x0(0) = ˙x(0) = vx(0) = v(0) cos θ=v0cos θ
y0(0) = ˙y(0) = vy(0) = v(0) sin θ=v0sin θ
y00 =g= const. x00 = 0 = const.
y0(t) = y0(0) gt x0(t) = x0(0) = const.
y(t) = y(0) + y0(0)t1
2gt2x(t) = x(0) + x0(0)t
Alternative form
ay=g= const. ax= 0 = const.
vy(t) = vy(0) gt vx(t) = vx(0) = const.
y(t) = y(0) + vy(0)t1
2gt2x(t) = x(0) + vx(0)t
Trajectory equation for x(0) = 0
y(x) = vy(0)
vx(0)x1
2
g
v2
x(0)x2+y(0)
y(x) = xtan θ1
2
g
v2(0) cos2θx2+y(0)
Velocity-position equations
v2(y) = v2(0) 2gy
v2
y(y) = v2
y(0) 2gy
Special points: Range R, height h, flight time T
h=v2
y(0)/2g h =v2(0) sin2θ/2g
R= 2vx(0)vy(0)/g R =v2(0) sin 2θ/g
T= 2vy(0)/g T = 2v(0) sin θ/g
R= 4hcot θ
Circular motion
Centripetal acceleration ar=v2/r =2
Arc length s=
Tangential speed v= = 2πr/T
Tangetial acceleration at=
Angular frequency ω= 2πf = 2π/T
Frequency and time period f= 1/T
Uniform circular motion at= 0, α = 0
Forces and Momentum
Newton’s second law (general) ~
F=d~p/dt
Potential energy and force (1D) F=dU/dx
Potential energy and force (3D) ~
F=−∇U
Linear Momentum ~p =m~v
Friction (static) fsfs,max =µsN
Friction (kinetic) fk=µkN
Grav. fields due to p oint or spherical sources
Force between masses F=Gmm0/r2
Gravity field of mass m g =Gm/r2
G.P.E. two masses U=Gmm0/r
Grav. potential of m V =Gm/r
Orbital motion
Kepler’s 2nd Law T2= (4π2/GM)r3
Orbit (circular) v2=GM/r
Escape velocity v2= 2GM/r
Constants related to gravity
Universal const. of gravitation G= 6.67 ×1011 N·m2/kg2
Earth surface gravity g= 9.81 m/s2
Earth mass & G GME= 3.98 ×1014 m3/s2
Solar mass & G GM= 1.33 ×1020 m3/s2
Moon mass & G GM$= 4.91 ×1012 m3/s2
Work and energy
Kinetic energy K=1
2mv2
Work W=Z~
F·d~r
Power P=dE/dt =dW/dt
Average Power Pav = E/t=W/t
Instantaneous Power P=~
F·~v =Fkv
Work-energy theorem Wnet =Wc+Wnc = K
Work done by con. forces Wc=U
Mechanical energy Emech =K+U
Conservation of mech. energy Ki+Ui+Wnc =Kf+Uf
Work done by non-con. forces Wnc =Emech
GPE uniform field U(y) = mgy +U(0)
Potential uniform grav. field V(y) = gy +V(0)
GPE uniform field Ugrav.=mgy=mgh
Mechanical energy Emech.=K+Utotal
Centre of mass
~
Rcm =1
MXmi~ri~
Rcm =1
MZ~rdm =1
MZ~rρdV
Theorems for variable forces
Impulse-momentum ~
J= ~p =~
Favt=Z~
Fnet(t)dt
version: Wednesday 3rd October, 2018 12:06 Page 1 SFSU Department of Physics
pf3
pf4
pf5

Partial preview of the text

Download Physics formula sheet and more Lecture notes Physics in PDF only on Docsity!

Position, velocity and acceleration

∆x/∆t = vav ∆v/∆t = aav dx/dt = v(t) dv/dt = a(t) ∫ a(t)dt = ∆v

v(t)dt = ∆x

Uniformly accelerated motion

v = v 0 + at x = x 0 + v 0 t + 12 at^2

v^2 = v^20 + 2a(x − x 0 ) x = x 0 +

v 0 + v 2

t

Projectile motion 2D (uniform field g=const.) x′(0) = ˙x(0) = vx(0) = v(0) cos θ = v 0 cos θ y′(0) = ˙y(0) = vy (0) = v(0) sin θ = v 0 sin θ

y′′^ = −g = const. x′′^ = 0 = const. y′(t) = y′(0) − gt x′(t) = x′(0) = const. y(t) = y(0) + y′(0)t − 12 gt^2 x(t) = x(0) + x′(0)t

Alternative form

ay = −g = const. ax = 0 = const. vy (t) = vy (0) − gt vx(t) = vx(0) = const. y(t) = y(0) + vy (0)t − 12 gt^2 x(t) = x(0) + vx(0)t

Trajectory equation for x(0) = 0

y(x) =

[

vy (0) vx(0)

]

x −

[

g v x^2 (0)

]

x^2 + y(0)

y(x) = x tan θ −

[

g v^2 (0) cos^2 θ

]

x^2 + y(0)

Velocity-position equations

v^2 (y) = v^2 (0) − 2 gy v^2 y (y) = v^2 y (0) − 2 gy

Special points: Range R, height h, flight time T

h = v^2 y (0)/ 2 g h = v^2 (0) sin^2 θ/ 2 g R = 2vx(0)vy (0)/g R = v^2 (0) sin 2θ/g T = 2vy (0)/g T = 2v(0) sin θ/g

R = 4h cot θ

Circular motion

Centripetal acceleration ar = v^2 /r = rω^2

Arc length s = rθ

Tangential speed v = rω = 2πr/T

Tangetial acceleration at = rα

Angular frequency ω = 2πf = 2π/T

Frequency and time period f = 1/T

Uniform circular motion at = 0, α = 0

Forces and Momentum

Newton’s second law (general) F~ = d~p/dt

Potential energy and force (1D) F = −dU/dx Potential energy and force (3D) F~ = −∇U Linear Momentum ~p = m~v Friction (static) fs ≤ fs,max = μsN Friction (kinetic) fk = μkN

Grav. fields due to point or spherical sources

Force between masses F = Gmm′/r^2 Gravity field of mass m g = Gm/r^2 G.P.E. two masses U = −Gmm′/r Grav. potential of m V = −Gm/r

Orbital motion

Kepler’s 2nd^ Law T 2 = (4π^2 /GM )r^3 Orbit (circular) v^2 = GM/r Escape velocity v^2 = 2GM/r

Constants related to gravity

Universal const. of gravitation G = 6. 67 × 10 −^11 N · m^2 /kg^2 Earth surface gravity g = 9.81 m/s^2 Earth mass & G GME = 3. 98 × 1014 m^3 /s^2 Solar mass & G GM = 1. 33 × 1020 m^3 /s^2 Moon mass & G GM$ = 4. 91 × 1012 m^3 /s^2

Work and energy

Kinetic energy K = 12 mv^2

Work W =

F^ ~ · d~r

Power P = dE/dt = dW/dt Average Power Pav = ∆E/∆t = W/∆t Instantaneous Power P = F~ · ~v = F‖v Work-energy theorem Wnet = Wc + Wnc = ∆K Work done by con. forces Wc = −∆U Mechanical energy Emech = K + U Conservation of mech. energy Ki + Ui + Wnc = Kf + Uf Work done by non-con. forces Wnc = −∆Emech GPE uniform field U (y) = mgy + U (0) Potential uniform grav. field V (y) = gy + V (0) GPE uniform field ∆Ugrav. = mg∆y = mgh Mechanical energy Emech. = K + Utotal

Centre of mass

R^ ~cm = 1 M

mi~ri R~cm =

M

~rdm =

M

~rρdV

Theorems for variable forces

Impulse-momentum J~ = ∆~p = F~av∆t =

F^ ~net(t)dt

Work-energy Wnet =

F^ ~net · d~r = ∆K

Types of collision

  • totally elastic: No loss of K.E. , e = 1
  • inelastic: Some loss of K.E., 0 < e < 1
  • completely inelastic: v 1 = v 2 = v, e = 0 Max K.E. loss

Collision conservation laws (1D & 2D)

Momentum m 1 ~u 1 + m 2 ~u 2 = m 1 ~v 1 + m 2 ~v 2 K.E. (elastic only) 12 m 1 u^21 + 12 m 2 u^22 = 12 m 1 v 12 + 12 m 2 v^22

Newton’s collision law (1D only)

Newton’s collision law (1D) (v 2 − v 1 ) = −e(u 2 − u 1 )

Collisions 1D Elastic (derived from the above)

v 1 = m 1 − m 2 m 1 + m 2

u 1 + 2 m 2 m 1 + m 2

u 2

v 2 =

2 m 1 m 1 + m 2

u 1 +

m 2 − m 1 m 1 + m 2

u 2

Collisions 1D Inelastic (derived from the above)

v 1 =

m 1 − em 2 m 1 + m 2

u 1 +

(1 + e)m 2 m 1 + m 2

u 2

v 2 =

(1 + e)m 1 m 1 + m 2 u 1 +

m 2 − em 1 m 1 + m 2 u 2

Rotational motion

Anguar velocity, acceleration ω = dθ/dt, α = dω/dt

Angular displacement ∆θ =

ωdt

Linear and angular connection vt = Rω, at = Rα Torque ~Γ = ~r × F~ Magnitude of torque Γ = rF sin ϕ = rF⊥ Angular momentum (particle) L~ = ~r × ~p Angular momentum (solid) L~ = I~ω Moment of inertia (particles) I = Σ mr^2 axis

Moment of inertia (solid) I =

r^2 axisdm

N2 for rotation (general form) ~Γ = d~L/dt N2 for rotation (I=const.) ~Γ = I~α Rotational K.E. Kr = 12 Iω^2

Work done by a torque W =

Γ · dθ = ∆Kr

Work done by const. or av. torque W = Γ · ∆θ = ∆Kr Rotational power P = Γω Conservation of ~L Iiωi = If ωf Rolling without slipping vcm = Rω, acm = Rα Parallel axis theorem I = Icm + M D^2

Total kinetic energy I = 12 Icmω^2 + 12 M v cm^2

Rotational motion with (α = const.)

ω = ω 0 + αt ∆θ = ω 0 t + 12 αt^2

ω^2 = ω^20 + 2α∆θ ∆θ =

ω 0 + ω 2 t

Substitutions for rotational dynamics

s =⇒ ∆θ F~ =⇒ ~Γ u =⇒ ω 0 m =⇒ I v =⇒ ω K = 12 mv^2 =⇒ Kr = 12 Iω^2 a =⇒ α ~p = m~v =⇒ ~L = I~ω

Moments of inertia

Moment Object Axis I = M R^2 Uniform ring/tube Through C.M. I = 12 M R^2 Uniform disk/cylinder Through C.M. I = 121 M L^2 Uniform rod Through C.M. I = 13 M L^2 Uniform rod Through end I = 25 M R^2 Uniform sphere Through C.M. I = 23 M R^2 Hollow sphere Through C.M. I = 13 M a^2 Slab width a Along edge (door)

Simple harmonic motion (SHM)

Hooke’s Law F (x) = −kx acceleration a(x) = −ω^2 x = −n^2 x Velocity v(x) = ±ω

A^2 − x^2 SPE or EPE for a spring U (x) = 12 kx^2 Total energy E = 12 kA^2 = 12 mω^2 A^2 Position x(t) x(t) = A cos(ωt + ϕ) Velocity v(t) v(t) = −Aω sin(ωt + ϕ) Acceleration a(t) a(t) = −Aω^2 cos(ωt + ϕ)

Period, mass-spring T =

f

2 π ω

= 2π

m k

Period, simple pendulum T =

f

2 π n

= 2π

l g

Period, physical pendulum T =

f

2 π n

= 2π

I

mgr

Period, torsional pendulum T =

f

2 π n

= 2π

I

κ

Trigonometry

cos(±π/6) = sin π/3 = sin(2π/3) =

cos(±π/3) = sin π/6 = sin(5π/6) = 1/ 2 cos(±π/4) = sin π/4 = sin(3π/4) = 1/

cos(± 5 π/6) = sin(−π/3) = sin(− 2 π/3) = −

cos(± 2 π/3) = sin(−π/6) = sin(− 5 π/6) = − 1 / 2 cos(± 3 π/4) = sin(−π/4) = sin(− 3 π/4) = − 1 /

a^2 = b^2 + c − 2 bc cos A Law of cosines a sin A

b sin B

c sin C

Law of sines

sin (θ ± φ) = sin θ cos φ ± cos θ sin φ cos (θ ± φ) = cos θ cos φ ∓ sin θ sin φ

sin(π ± θ) = ∓ sin θ sin(π/ 2 ± θ) = cos θ cos(π ± θ) = − cos θ cos(π/ 2 ± θ) = ∓ sin θ sin(θ ± π) = − sin θ sin(θ ± π/2) = ± cos θ cos(θ ± π) = − cos θ cos(θ ± π/2) = ∓ sin θ

sin(ωt ± π) = − sin ωt sin(ωt ± π/2) = ± cos ωt cos(ωt ± π) = − cos ωt cos(ωt ± π/2) = ∓ sin ωt

sin^2 θ + cos^2 θ = 1 sin 2θ = 2 sin θ cos θ cos 2θ = cos^2 θ − sin^2 θ

Small angle formulae for small θ  1 (in radians)

sin θ ≈ θ cos θ ≈ 1 − θ^2 / 2 tan θ ≈ θ

Inverse trig functions where α = principal value

cos θ = cos α =⇒ θ = ±α + 2nπ sin θ = sin α =⇒ θ = (−1)nα + nπ tan θ = tan α =⇒ θ = α + nπ

Binomial formulae

(1 + x)n^ = 1 + nx +

n(n − 1)x^2 + ... if |x|  1

(a + b)n^ =

∑^ n

r=

nCr an−r (^) br (^) integer n

Combinatorics

nCr = n! r!(n − r)!

nPr = n! (n − r)!

Quadratic equation y = ax^2 + bx + c

Roots at x = − b 2 a

b^2 − 4 ac 2 a

max, min at x = −b/ 2 a

Linear Equation y = mx + b

Given m, (x 1 , y 1 ) y − y 1 = m(x − x 1 )

Given (x 1 , y 1 ), (x 2 , y 2 ) y − y 1 =

y 2 − y 1 x 2 − x 1

(x − x 1 )

Dot and cross product

A^ ~ · B~ = AxBx + Ay By + Az Bz = | A~|| B~| cos θ | A~ × B~| = | A~|| B~| sin θ

Differential equations

dy dt

  • c 1 y = c 2 y(0) = 0 y(t) = c 2 c 1

1 − e−c^1 t

dy dt

  • c 1 y = 0 y(0) > 0 y(t) = y(0)e−c^1 t

Exponential behaviour

y(t) = y(0)e−t/τ^ = y(0)e−λt^ Exponential decay y(t) = y(0)2−t/Thalf^ Exponential decay Thalf = τ ln 2 Half life

y(t) = ymax

1 − e−t/τ^

Exponential growth

Percent difference between quantities A, B

% diff (A, B) =

|A − B|

av(A, B)

× 100 =

|A − B|

A + B

× 200

Percent error

% error =

|measured − true| true

× 100

Possibly useful integrals ∫ dx (x^2 ± a^2 )^3 /^2

±x a^2

x^2 ± a^2

∫ (^) π

0

sin^3 θdθ =

xdx (x^2 ± a^2 )^3 /^2

∫ x^2 ±^ a^2 dx √ x^2 ± a^2

= ln

[√

x^2 ± a^2 + x

]

xdx √ x^2 + a^2

x^2 + a^2 ∫ dx √ a^2 − x^2

= arcsin(x/a)

Taylor series x − a = h, |x − a| = |h| < 1

f (x) = f (a) + (x − a)f ′(a) +

f ′′(a)(x − a)^2 + ...

f (a + h) = f (a) + hf ′(a) +

h^2 2!

f ′′(a) + ...

Mathematical constants

e = 2. 71828 ... 1 o^ = 1. 745 × 10 −^2 rad π = 3. 14159 ... 1 ′^ = 2. 9089 × 10 −^4 rad log 10 e = 0. 434 ... 1 ′′^ = 4. 8481 × 10 −^6 rad ln 10 = 2. 3025 ... 1 rad = 57. 296 o ln 2 = 0. 693 ... π/6 rad = 30o e−^1 = 0. 368 ... π/3 rad = 60o (1 − e−^1 ) = 0. 632 ... π/4 rad = 45o √ 3 /2 = 0. 866 ... 1 rpm = 0.1047 rad/s 1 /

2 = 0. 707 ... 1 rad/s = 9.549 rpm

Greek alphabet

Letter Upper case Lower case Alpha A α Beta B β Gamma Γ γ Delta ∆ δ Epsilon E , ε Zeta Z ζ Eta H η Theta Θ θ Iota I ι Kappa K κ Lambda Λ λ Mu M μ Nu N ν Xi Ξ ξ Omicron O o Pi Π π Rho P ρ Sigma Σ σ Tau T τ Upsilon Y υ Phi Φ φ, ϕ Chi X χ Psi Ψ ψ Omega Ω ω

SI units and derived units

Quantity Symbol Unit Name Basic Units Mass m kg kilogram kg Length l m meter m Time t s second s Force F N Newton kg ms−^2 Energy E J Joule kg m^2 s−^2 Power P W = Js−^1 Watt kg m^2 s−^3 Pressure p Pa = N.m^2 Pascal kg/ms^2

Abbreviations used: atm.=atmosphere (pressure) con. = conservative (force) AC = Alternating Current BVP = Boundary Value Problem CM = Centre of Mass DC = Direct Current (or Detective Comics) EM or E&M = ElectroMagnetism EMF = ElectroMotive Force (voltage) EPE = Elastic Potential Energy GR = General Relativity GPE = Gravitational Potential Energy G.T. = Galilean Transformation IC = Initial Condition IVP = Initial Value Problem ODE = Ordinary Differential Equation PD = Potential Difference PDE = Partial Differential Equation PE = Potential Energy L.T. = Lorentz Transformation SHM = Simple Harmonic Motion SHO = Simple Harmonic Oscillator SPE = Strain/Spring Potential Energy SR = Special Relativity STP = Standard Temperature and Pressure (20o^ C, 1 atm) TIR = Total Internal Reflection N1,N2,N3= Newton’s laws of motion T0,T1,T2,T3= the laws of thermal physics K1,K2,K3= Kepler’s laws of planetary motion

Metric Prefixes

exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deci d 10 −^1 centi c 10 −^2 milli m 10 −^3 micro μ 10 −^6 nano n 10 −^9 pico p 10 −^12 femto f 10 −^15 atto a 10 −^18

Symbols used in mechanics:

A Amplitude for SHM A, A 1 , A 2 Cross sectional area of pipe a Acceleration at Tangential component of acceleration ar Radial component of acceleration e Coefficient of resitution E Total energy F , Fav Force, average force f Frequency (rev/second or cycles/second) f Friction (force) G Universal gravitation constant g Gravitational field strength h depth or height I Moment of inertia J^ ~ Impulse (change in momentum J~ = ∆~p) K Kinetic energy Kr Rotational kinetic energy k Spring constant k wavenumber 2π/λ L~ Angular momentum l Length M , m Mass n Normal force P Power Pav Average power p Momentum r radius s Displacement T Time period/ time of flight T tension U Potential energy u velocity at time t = 0 v velocity at time t W Work Wc Work done by a con. force(s) Wnc Work done by non-con. force(s) Wnet Work done by net force Y Young’s modulus

α Angular acceleration (rad/s^2 ) ∆ change in... μk Coefficient of kinetic friction μs Coefficient of static friction ω Angular speed at time t (rad/s) ω 0 Angular speed at time t = 0 (rad/s) ∆θ angular displacement ∆θ = θ − θ 0 θ 0 Angular position at time t = 0 Γ Torque ρ density (mass/volume)