Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Organic Chemistry on Metal Surfaces: Alkane-Alkene Conversion & Hydrogenation, Study notes of Chemistry

This document, authored by francisco zaera from the university of california, riverside, explores the organic chemistry of alkanes and alkenes on metal solid surfaces. Topics include alkane-alkene conversion, h-d exchange, and stereoselectivity in hydrogenation. The document also discusses the role of cinchona derivatives in enhancing enantioselectivity in hydrogenation reactions.

Typology: Study notes

Pre 2010

Uploaded on 09/02/2009

koofers-user-0h3
koofers-user-0h3 🇺🇸

1

(1)

10 documents

1 / 63

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Francisco Zaera
Department of Chemistry
University of California, Riverside
Organic Chemistry on
Metal Solid Surfaces
by Francisco Zaera
Department of Chemistry
University of California
Riverside, CA 92521, USA
Phone: 1 (951) 827-5498
Fax: 1 (951) 827-3962
Email: zaera@ucr.edu
http://www.zaera.chem.ucr.edu
General References: Z. Ma and F. Zaera, Surf. Sci. Rep., 61(5), 229-282 (2006).
F. Zaera, Catal. Lett., 91(1-2), 1-10 (2003).
F. Zaera, Chem. Rev., 95, 2651-2693 (1995).
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a
pf1b
pf1c
pf1d
pf1e
pf1f
pf20
pf21
pf22
pf23
pf24
pf25
pf26
pf27
pf28
pf29
pf2a
pf2b
pf2c
pf2d
pf2e
pf2f
pf30
pf31
pf32
pf33
pf34
pf35
pf36
pf37
pf38
pf39
pf3a
pf3b
pf3c
pf3d
pf3e
pf3f

Partial preview of the text

Download Organic Chemistry on Metal Surfaces: Alkane-Alkene Conversion & Hydrogenation and more Study notes Chemistry in PDF only on Docsity!

Francisco ZaeraDepartment of Chemistry University of California, Riverside

Organic Chemistry onMetal Solid Surfaces

by Francisco Zaera Department of Chemistry University of California Riverside, CA 92521, USA Phone: 1 (951) 827-5498 Fax: 1 (951) 827-3962 Email: zaera@ucr.edu http://www.zaera.chem.ucr.edu

General References:

Z. Ma and F. Zaera,

Surf. Sci. Rep.

,^ 61(5) , 229-282 (2006).

F. Zaera,

Catal. Lett.

,^ 91(1-2)

, 1-10 (2003).

F. Zaera,

Chem. Rev.

,^^95 , 2651-2693 (1995).

F. Zaera,

Appl. Catal.

,^^229 , 75 (2002).Francisco ZaeraDepartment of Chemistry University of California, Riverside A selective process:• Consumes less reactants• Avoids separation problems

  • Produces less polluting byproducts

n-Hexane

AromatizationCyclizationIsomerizationHydrogenolysis

BenzeneMethylcyclopentane2-MethylpentanePropane

(ON ~ 40)

(ON ~ 95)(ON ~ 90)(ON ~ 80)(gas)

Dehydrogenation

2-Hexene

Reforming

Desirable Undesirable

Introduction

Key issue in catalysis: Selectivity

Francisco ZaeraDepartment of Chemistry University of California, Riverside

Outline

  1. Chiral templating.
    1. C=C migration.

CH^3

  1. α-,^ β-, and

γ-H

Regioselectivity elimination.

Enantioselectivity

  1. Chiral modifier adsorption
  2. C=C cis-trans isomerization.

Stereoselectivity

Francisco ZaeraDepartment of Chemistry University of California, Riverside

Outline

  1. Chiral templating.
    1. Chiral modifier adsorption
  2. C=C migration.

CH^3

Regioselectivity

Enantioselectivity

  1. C=C cis-trans isomerization.

Stereoselectivity

  1. α-,^ β-, and

γ-H elimination.

β -hydride elimination

F. Zaera,

J. Am. Chem. Soc.

,^^111 , 8744 (1989).

A. J. Gellman,

Acc. Chem. Res.

,^^33 , 19 (2000).

B. E. Bent,

Chem. Rev.

^96 , 1361 (1996).

Francisco ZaeraDepartment of Chemistry University of California, Riverside

Alkane-alkene equilibria via

β -H

F. Zaera,

Molec. Phys.

,^^100 , 3065-3073 (2002). F. Zaera,

Catal. Lett.

,^ 91(1-2)

, 1-10 (2003).

F. Zaera,

Top. Catal.

,^ 34 (1-4)

, 129-141 (2005).

-^ β-hydride elimination accounts for fast alkane-alkene equilibria - Reforming requires

α- and

γ-hydride elimination

Francisco ZaeraDepartment of Chemistry University of California, Riverside

α -H vs.

β -H elimination Ethylidyne formation

F. Zaera, S. Tjandra and T. V. W. Janssens,

Langmuir

,^^14 , 1320-1327 (1998).

Francisco ZaeraDepartment of Chemistry R(β)/R( University of California, Riverside

α) ~ 10

4 @ 200 K,

but decreases with T D H C–C^ H ethylene D

CH^3 D C (^2) ethyl

CH DC ethylidene 3 CH^3 C ethylidyne

ethylidyne- C d^1 CDH^2

α-D

β-H

δ[CDH

]^2

δ[CH^3 α-D ]^ β-H

400 K 350 K 300 K

Wavenumber / cm

-

bancer Abso

CH^3

CD^2

I/Pt(111)

RAIRS versus Adsorption T 1000 1100 1200 1300 1400 1500

α -H vs.

β -H elimination

Ethane catalytic H-D exchange

A. Loaiza, M. Xu and F. Zaera,

J. Catal.

,^^159 , 127 (1996).

A. Loaiza, D. Borchardt and F. Zaera,

Spectrochim. Acta A

,^^53 , 2481 (1997).

A. Loaiza and F. Zaera

J. Am. Soc. Mass Spectrom.

,^^15 , 1366 (2004).

Francisco ZaeraDepartment of Chemistry University of California, Riverside

amu b. unitsra / er essur tial Pr Pa

x C^ D^2 MS/CID-MS 2nd Stage, 34 amuP= 50 TorrCD^2 6 P= 500 TorrH^2 T = 675 K55% Conversion

+ H 6

/Pt 2

P= 50 TorrCH^26 P= 500 TorrD^2 T = 625 K20% Conversion^ δ^ / ppm C^2 13 C NMR of Mixture H^ + D 6

/Pt 2

5.^

5.^

6.^

6.^

H^ ethylene

H C–C H H

CH HC ethylidene α-H^3 β-H^

H^ C–CH^3 ethaneCH^3 H^ C^2 ethyl

3 ethane-

d^2 DH^ C–CH^2

D 2

ethane-

d^2 D^ HC–CH^2

3

R(β) ~ 5·R(

α) @ 625K

Hydrocarbon reforming^ Isomerization vs. hydrogenolysis

T. V. W. Janssens, G. Jin and F. Zaera,

J. Am. Chem. Soc.

,^^119 , 1169 (1997).

F. Zaera and S. Tjandra,

J. Am. Chem. Soc.

,^^118 , 12738 (1996).

Francisco ZaeraDepartment of Chemistry University of California, Riverside Ni^ Ni

PtNi Pt CH^2 C–CH

3 H HC H

CH^3 CH^3 C H H^3 C^ CH^2 H HC

CH^2 C–CH

3 H HC

CH^3

CH^2 C–CH

3 H HC

CH^3 CH^3 H 3C C CH H H 2C

Metallacyclobutane

CH^3 H 3C C CH H H 2C

CH^3 CH 3 –C=CH^2 C

H^2

CH^ 3–C–CH^2 CH

H CH^3 Neopentylidene

CH^3 CH 3 –C–CH^2 H CH H Neopentyl

α-H elimination(Hydrogenolysis)^ γ-H elimination(Isomerization)

F. Zaera,

Chem. Rev.

,^^95 , 2651 (1995). F. Zaera,

Appl. Catal.

,^^229 , 75-91 (2002).Francisco ZaeraDepartment of Chemistry University of California, Riverside

-^ β-H eliminationis much fasterthan^ α

-H or^ γ

-H

elimination• Nevertheless,

α-H and^ γ-H eliminationsare required forreforming• Selectivity is definedearly by initialdehydrogenation steps

Hydrocarbon reforming

F. Zaera,

Catal. Lett.

,^^91 , 1 (2003),

F. Zaera,

Molec. Phys.

,^^100 , 3065 (2002).

Francisco ZaeraDepartment of Chemistry University of California, Riverside

β -H elimination in Horiuti-Polanyi mechanism

H^ CH^ alkene

3 C–C^ CH

3 H

H^ CH H C 2 alkyl

(^3) C CH 3

H^ CH H C 3 alkane

(^3) C CH 3

alkenes

H^ HC alkylidene β-H CH^3 C CH^3

smaller alkanes

α-H^

Hydrogenolysis

H H C (^2) metallacycle CH^3 C CH^2

branched alkanes

γ-H

Isomerization

Explains:

  • Alkane-alkene conversion• H-D exchange• C=C isomerization

C=C double bond migration^ R. Morales and F. Zaera,

J. Phys. Chem. B

,^ 110(19)

, 9650-9659 (2006).Francisco ZaeraDepartment of Chemistry University of California, Riverside

CH^3 1-methyl cyclopentene (1MCp=)

CH methylenecyclopentane (MeCp) 2

1-methyl 1-cyclopentyl (1MCpyl)

CH^3

CH^3 1-methylcyclopentene (ads)

H H methylenecyclopentane (ads)

±H^

±H

Isomerization depends onregioselectivity of

β-H

elimination step from thealkyl intermediate

Temperature / K

arb. units / Partial Pressure

3L MeCp/6L D

/Pt(111) TPD 2 100

200

300

x0.5 x

amu b. Molecular Ion

82 83 84 86

100

200

(^67686971300)

x0.1 x0.5 x

amu

  • a. Cp Fragment^ D^

D

DD

D D

DD

Francisco ZaeraDepartment of Chemistry University of California, Riverside

H-D exchange in methylene cyclopentane

  • Multiple H-Dexchangeaccompaniesisomerization.• First substitutionoccurs in themethylene/methylgroup.

R. Morales and F. Zaera,

J. Phys. Chem. B

,^ 110(19)

, 9650-9659 (2006).

C=C double bond migration^ Regioselectivity energetics

Francisco ZaeraDepartment of Chemistry University of California, Riverside

R. Morales and F. Zaera,

J. Phys. Chem. B

,^ 110(19) H H^ MeCp , 9650-9659 (2006). CH^3 1MCpyl CH^3 1MCp=

β-H from methyl

β-H from cycle

∆H° / kcal·mol

  • (^50) -5 -10 -

CH^3 1MCp=

CH^2 MeCp

+H^

+H

–H^

–H

~3 kcal/mol