



















Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Difference formulae can be developed such that linear combinations of functional values at various nodes approximate a derivative at a node. Numerical Differentiation, Interpolating Polynomials, Formulae, Finite Difference, Quadratic Interpolating Polynomial, Error Estimates, Power Series
Typology: Slides
1 / 27
This page cannot be seen from the preview
Don't miss anything!
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
th^
f(x)
th
h^ N^
d^ N^
1 +^
f
d x
N
1
d^ N
1 +^
f
d x
N
1 +
-----------------
f^
x (
a^1
x N
a
x 2 N
1
-^
a^ N
1 +
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
p^ th
f^
x (
th p
g x
f^
x (
g x
p ≥
g x
th p
g x
thp
f^
x ( )
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
⇒ ⇒ ⇒
g x
a^
xo 2
a
x 1
a 2
x^ o
x^1
x^2
g x
o (^
a^ o
2
a^1
a 2
g x
1 (^
a^
ho 2
a^1
h^
a 2
g x
2 (^
a^ o^
h (^
a 1
h (^
a^2
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
(^2) h
h^
h 2
h^
a^ o a 1 a 2
a^ o^
a^1
a (^2) a^ o
f^^2
f^^1
-^
f^ o
2
(^2) h
a 1
f^^1
f^^2
-^
f^ o
a 2
g x
f^^2
f^^1
-^
f^ o +
2 h 2
(^2) x
f^^1
f^^2
-^
f^ o
x^
f^ o
g^
(^1) ( )
x (^
f^^2
f^^1
-^
f^ o + h 2
x^
f^^1
f^^2
-^
f^ o
h
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
i
i^
i+
i+
generalized nodal numbering
x^0
x^1
x^2
f^ i
(^1) ( )
f^ i
-^
f^ i
1 +^
f^ i
2 +
h
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
( g 1) ( x
) 1
⇒
⇒
x^1
g^
(^1) ( )
x
1 (^
g^
(^1) ( )
h (^
g^
(^1) ( )
x
1 (^
f^^2
f^^1
-^
f^ o
h 2
f^^1
f^^2
f^ o
h
g^
(^1) ( )
x
1 (^
f^^2
f^ o
g x
f^
(^1) ( )
x^1
g^
(^1) ( )
x
1 (^
g^
(^1) ( )
x
1 (^
f^
(^1) ( )
x^1
f^^2
f^ o
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
( g 1) ( x
) 2
⇒
⇒
x^2
g^
(^1) ( )
x
2 (^
g^
(^1) ( )
h (^
g^
(^1) ( )
x
2 (^
f^^2
f^^1
-^
f^ o
h 2
h^
f^^1
f^^2
f^ o
h
g^
(^1) ( )
x
2 (^
f^^2
f^^1
-^
f^ o
2 h
= f x (^
g x
f^
(^1) ( )
x^2
g^
(^1) ( )
x
2 (^
g^
(^1) ( )
x
2 (^
f^
(^1) ( )
x^2
f^^2
f^^1
-^
f^ o
2 h
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
x^0
x^1 i-
x^2 i
i-2^ f^ i
(^1) ( )
f^ i
f^ i
1
f^ i
2
+
2
h
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
g^
(^2) ( )
x
o (^
f^
(^2) ( )
x^ o
f^^2
f^^1
-^
f^ o
h 2
i+2^ x^2
i+1x^1
i x^0 f^ i (^2) ( )
f^ i
2 +^
f^ i
1 +
f^ i +
h
2
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
( g 2) ( x
) 1
⇒
1
x^1
g^
(^2) ( )
x
1 (^
g^
(^2) ( )
h (^
g^
(^2) ( )
x
1 (^
f^^2
f^^1
-^
f^ o
h 2
=^ f^
x (
g x
f^
(^2) ( )
x^1
g^
(^2) ( )
x
1 (^
g^
(^2) ( )
x
1 (^
f^
(^2) ( )
x^1
f^^2
f^^1
-^
f^ o
h 2
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
x^0
x^1
x^2
f^0
f^1
f^2
h^
h
x
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
x
x
f^
x ( )
g x
e x (
g x
f^ o
x^
x^ o
(^
f^
o h
x
x^ o
(^
x^
x^1
(^
2 f^ o (^2) h
e x (
x^
x^ o
(^
x^
x^1
(^
x^
x^2
(^
f
(^3) ( (^) )^
ξ(
x^ o
ξ^
x^2
e x (
x^
x^ o
(^
x^
x^1
(^
x^
x^2
(^
f o
(^3) ( )
e x (
x^
x^ o
(^
x^
x^1
(^
x^
x^2
(^
3 f^ o h 3
ξ
ξ^
ξ^
ξ^
x ( )
=
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
g^
(^1) ( )
x (^
f^
(^1) ( )
x^
f^
o h
x
x^ o
(^
2 f^ o (^2) h
x^
x^1
(^
2 f^ o (^2) h
e^
(^1) ( )
x (^
x^
f^
(^1) ( )
x^
f^
o h
x
1
x^ o
(^
2 f^ o h 2
e^
(^1) ( )
x
1 (^
f^
(^1) ( )
x^
f^^1
f^ o
h -----^2 h
f^^2
f^^1
-^
f^ o
e^
(^1) ( )
x
1 (^
f^
(^1) ( )
x^
f^^2
f^ o
e^
(^1) ( )
x
1 (^
CE 341/441 - Lecture 13 - Fall 2004
p. 13.
e^
(^1) ( )
x (^
ξ
x^1
e^
(^1) ( )
x
1 (^
f
(^3) ( (^) )^
x^ ( o
x^
x^1
(^
x^
x^2
(^
x^
x^ o
(^
x^
x^2
(^
x^
x^ o
(^
x^
x^1
(^
] x
e^
(^1) ( )
x
1 (^
f
(^3) ( (^) )^
x^ ( o
x^1
x^ o
(^
x^1
x^2
(^
e^
(^1) ( )
x
1 (^
h
f^
(^3) ( )
x
o (^
e^
(^1) ( )
x
1 (^
f^
(^1) ( )
x^
f^^2
f^ o
h
f^
(^3) ( )
x
o (^