Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Notes on Proof by Induction and Inductively Defined Functions | CS 5303, Study notes of Computer Science

Material Type: Notes; Professor: Ceberio; Class: Logical Foundations of CS; Subject: Computer Science; University: University of Texas - El Paso; Term: Fall 2005;

Typology: Study notes

Pre 2010

Uploaded on 08/18/2009

koofers-user-k6p
koofers-user-k6p 🇺🇸

10 documents

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
! " ! $#%'&'%
( )+*+,+-./102)
3547698:6<;>=@?:6A8CBD69E:6BFEHGI?J?:69;LK>8:GM;7NOLPQ?:4>RTSUPQ?HGMVK76A8XWY=ZK7EC[]\ ^_;a`b=E:SUP@?:GcVK>6Zdfehgjik;>laEHRmiXE:;>=Z[cl
P@;>ln^_EHoT;76pCK76A8:8HP@EHGMPZ;rq
35476TgtsT=ZSuW7[M6v?:6j?:476sv=ZK>EH8:6jNZGMwZ69;tlaK7EHGI;7N?:476Lx>Ey8z?{B|6T69}=Z`<sv[cPZ8H8TdF=;tW7EH==Z`~8TdFGM;>laKs?:GMwZ6
la6vx;7G?HGI=;>89d>P@;>lnW7EH=h=@`~85ehgGM;>laK>sv?:GM=Z;rq
fn1vn5y1v
r6T?9\ 85E:69wGM6TBPusv=ZK>W7[I6=Z`16TaPZSuW7[I6A8T
Xr>'¡£¢f¤>¥F¦>§Q¨©
X
ªz«
N
¬®f¯Q°>±
©
¬®²
¥T³µ´
¯
¥¶
¥
¯{·
´Z¸
¹~º¼»
0X
¹b½¾»
nXn+ 1 X
¬c¿À¿y¬®Á
¦Y³´
N
Â
¢Y¤>¥v¨H¥
«vª
¨:¥
¹bºÃ»
§
f¯
¹b½¾»
±yªQ>¿
©
¬
©
°
©¾¥§
L¬®f¯Q°>±
©
¬®²
¥
¯
¥~¶
>¬
©
¬~ªQ'ªz«
N
Â
Xr>'jÄÅ1¥T©
A={(,)}
©b¤7¥u§Q³ ¦7¤7§
·
¥v©
Á
§
¯
¥
ªz«Æ·yª
©b¤u¦>§Q¨H¥
©®¤>¥
¿
¥
¿vÂ
¢f¤7¥
¿
¥T©
DA
ªJ«
Ç
¥v³®³È
«vª
¨
Á
¥
¯
¥HÉ¦f¨:¥
¿H¿¬~ª@7¿
Ç
¬
©b¤m¦>§Q¨:¥
©b¤7¥
¿¬c¿HÊ5±
§@³®³I¥
¯
©b¤7¥CË<´
±HÌ
³I§
hÍ@°
§
Í
¥
Êάc¿<¯
¥¶
¥
¯{·
´Z¸
¹~º¼»
D
¹b½¾»
x, y D(x), xy D
Xr>'Ï¢f¤>¥
¿
¥T©
E
ªz«
Ç
¥v³®³@¦7§@¨:¥
©b¤7¥
¿
¥
¯
¥:Év¦f¨:¥
¿y¿¬~ªQ>¿yÊÁ
§
¯
¥
ªJ«k¬~¯
¥
©
¬
¶|¥v¨
¿Ð«
¨
ª@Á
A
Ê
§
Y¯
ª
¦>¥v¨H§Q©
ª
¨
¿
+
§
f¯
×
Ê¬c¿
©®¤>¥
¿°>·v¿
¥T©
ªJ«
(A {+,×})
¬®f¯Q°>±
©
¬®²
¥v³´
¯
¥¶
¥
¯
§
¿«vª
³®³
ª
Ç
¿
¸
¹~º¼»
AE
¹b½¾»
e, f E(e+f),(e×f)E
Xr>'ÑÒ¢f¤>¥
¿
¥v©
BT
ªz«u·v¬®
§Q¨´©]¨:¥y¥
¿
Ç
¤
ªÓ¿
¥¥T³I¥
Á
¥
©
¿
§Q¨:¥{¥v³I¥
Á
¥
©
¿mªJ«
§@³ ¦7¤>§
·
¥v©
A
¬c¿
©®¤>¥
¿°>·v¿
¥v©
ªz«
(A {∅,(,),,})
¬®Y¯@°>±
©
¬®²
¥T³µ´
¯
¥~¶
¥
¯
§
¿«vª
³®³
ª
Ç
¿
¸
¹~º¼»
AB
¹
¬
©
¬c¿
©b¤7¥Æ¥
Á
¦f©´U©]¨:¥y¥
»
¹b½¾»
l, r AB aA, (a, l, r)AB
¹
©b¤7¥U©]¨:¥y¥
ªJ«
¨
ªAª
©
a
ÊCªJ«
³I¥
«
©
¿°>·
©]¨:¥y¥
l
§
Y¯
¨
¬Í
¤h©
¿°>·
©]¨:¥y¥
r
»
Ô
pf3

Partial preview of the text

Download Notes on Proof by Induction and Inductively Defined Functions | CS 5303 and more Study notes Computer Science in PDF only on Docsity!

3 547698:6<;>=@?:6A8CBD69E:6BFEHGI?J?:69;LK>8:GM;7N OLPQ?:4>RTSUPQ?HGMVK76A8XWY=ZK7EC[]\ ^_;a`b=E:SUP@?:GcVK>6Zdfehgjik;>laEHRmiXE:;>=Z[cl P@;>ln^_EHoT;76pCK76A8:8HP@EHGMPZ;rq

3 5476TgtsT=ZSuW7[M6v?:6j?:476 sv=ZK>EH8:6jNZGMwZ69;tlaK7EHGI;7N?:476Lx>Ey8z?{B|6T69}=Z<sv[cPZ8H8TdF=;tW7EH==Z~8TdFGM;>laKs€?:GMwZ la6vx;7G?HGI=;>89d>P@;>lnW7EH=h=@`~85ehg‚GM;>laK>sv?:GM=Z;rq

ƒ „f n† ‡ ˆŠ‰1‹vŒŽ†n5 ‹y‰1‹v‘ ’

“r6T?9\ 8 5E:69wGM6TB”Pusv=ZK>W7[I6•=Z`16T–aPZSuW7[I6A8T—

˜X™rš>›'œž Ÿ ¡£¢f¤>¥F¦>§Q¨€© X ªz« N ¬®f¯Q°>±

T³μ´ ¯

0 ∈ X ¹b½¾» n ∈ X ⇒ n + 1 ∈ X

¬c¿À¿y¬®Á

Y³´

N Â

Y¤>¥v¨H¥ « vª

:¥ ¹bºÃ»^ § f¯

b½¾» ± yªQ>¿

L¬®f¯Q°>±

¬~ªQ'ªz« NÂ

˜X™rš>›'œž ŸjĔÅ1¥T© A = {(, )}

b¤7¥u§Q³ ¦7¤7§ ·

¥v© Á

z«Æ·yª

b¤u¦>§Q¨H¥ ©®¤>¥ ¿

f¤7¥ ¿

¥T©

D ⊆ A∗^ ªJ«

Ç ¥v³®³È^ «vª ¨Á ¥¯ ¥Hɀ¦f¨:¥^ ¿H¿€¬~ª@7¿ Ç ¬©b¤m¦>§Q¨:¥^ ©b¤7¥^ ¿€¬c¿HÊ5± §@³®³I¥^ ¯ ©b¤7¥CË<´^ ±HÌ ³I§^ hÍ@° §Í¥Êάc¿<¯ ¥¶ ¥¯{· ´Z¸

¹~º¼»  ∈ D ¹b½¾» x, y ∈ D ⇒ (x), xy ∈ D

˜X™rš>›'œž ŸÏ¢f¤>¥ ¿

¥T©

E ªz« Ç

v³®³@¦7§@¨:¥ ©b¤7¥ ¿

¥:Év¦f¨:¥ ¿ y¿€¬~ªQ>¿yʞÁ

ªJ«k¬~¯

|¥v¨ ¿ Ы

ª@Á A Ê

¦>¥v¨H§Q© ª

f¯ ×Ê Š¬c¿

€°>·v¿

J« (A ∪ {+, ×})∗^ ¬®f¯Q°>±

v³´ ¯

Š«vª

Ç

A ⊆ E ¹b½¾» e, f ∈ E ⇒ (e + f ), (e × f ) ∈ E

˜X™rš>›'œž ŸÑÒ¢f¤>¥ ¿

¥v© BT ªz«u·v¬®

Q¨€´©]¨:¥y¥ ¿

Ç ¤

Ó¿

‚¥T³I¥

Á

§Q¨:¥{¥v³I¥ Á

mªJ«

¥v© ©®¤>¥ A^ ¬c¿ ¿ €°>·v¿

v© ª z« (A ∪ {∅, (, ), , })∗^ ¬®Y¯@°>±

T³μ´ ¯

Š«vª

Ç

∅ ∈ AB

¬c¿

b¤7¥Æ¥ Á ¦f© ´U©]¨:¥y¥ »

¹b½¾» l, r ∈ AB ⇒ ∀a ∈ A, (a, l, r) ∈ AB

b¤7¥U©]¨:¥y¥ ª J«

ªAª

a ÊCªJ«

]¨:¥y¥ l

¨^ Y¯

¬Í

h© ¿ €°>·

]¨:¥y¥ r

Ô

ÕnŸÖ¼×1Ø~Ù9Ø Úה¡Û ¬®f¯Q°>±

¬~ªQªJ«

X ¬c¿‚Yª@

ÁU·T¬Í@°>ª@°h¿{¬c¿X«vª

n§@³®³ ©®¤>¥v¨H¥m¥HÉ x^ ∈^ X^ Ê ¬ c¿

ܰa>¬~ÝT°

Ç

Q´{©

x ·

{§y¦Z¦Y³´ ¬ ®Í

b¤7¥ ¬ ®Y¯Q°>±

³I¥

˜X™rš>›'œž ŸjÞߢf¤>¥ « vª

Ç

®hÍ ¬®Y¯@°>±

¬~ªQ ªJ« N^2 ¬c¿

ÁU·T¬Í@°>ª@°h¿

(0, 0) ∈ N^2 ¹ I 1

(n, m)^ ∈^ N^2 ⇒^ (n^ + 1, m)^ ∈^ N^2 ¹ I 2

(n, m)^ ∈^ N^2 ⇒^ (n, m^ + 1)^ ∈^ N^2

à á⼑U‘ãäÆå!‹v † ‡nˆÎ‰1‹v‘

˜X™rš>›'œž ŸæÅ1¥T©Aç ¿

¦Y¨

¬®Y¯@°>±

¬~ªQ

b¤7§@©C§@³®³ ¿

®hÍQ¿u¬®

b¤7¥ÆË´ ± yÌ

ÍZ°

Í

D ±yªQ

¿ÀÁ

è ( é

è ) é~ÂFê1ª

x ∈ DÊ l(x) ¯

°aÁU·

v¨ ª z«

è ( é

f¯ r(x) ¯

°aÁU·

v¨ ª z«

è ) é~Â

Å

1¥v© P (x)

®¤>¥5¦f¨ ª

¦>¥v¨€©]´ (^) Ç ¥ Ç § ©Î© ª

¦Y¨

P (x) : l(x) = r(x)  ¹~º¼» (^) ©b¤7¥ ª Q

μ´n¥T³I¥ Á

b¤7¥ ·

€¬c¿À¬c¿  Ê

b¤7¥Æ¥ Á

¦Y©]´

®hÍÂkëfª‚¬

c¿

P

l() = r() = 0 ¹b½¾» (^) Å1¥T© x, y ∈ D Êÿ€°>±

©®¤>§Q©

P (x)

f¯ P (y) Â

Å

1¥v© z = xy

l(z) = l(x) + l(y) = r(x) + r(y) = r(z) ¢f¤>¥v¨:¥ « vª

Ê

P (xy) ÂìëY¬®Ám¬

I§@¨€³μ´ (^) Ç ¥ ¿

Ç ©®¤>§Q©

P ((x))Â íÆ¥ ¯

Q°>±

ªQÁ

b¤7¥Æ§ · yªQ²

©b¤7§@© ∀x ∈ D Ê l(x) = r(x)Â

î „f n† ‡ ˆŠ‰1‹vŒFï€åð† 5 F†ðãQ‡ nˆÎ‰1‹v‘< n’

˜X™rš>›'œž Ÿjñߢf¤>¥ «

y°af±

¬~ªQ

N → N ¬c¿•¬®Y¯@°>±

T³μ´ ¯

f act(0) = 1 ¹b½¾» f act(n + 1) = (n + 1) × f act(n)

ò<¥T¨:¥ (^) Ç ¥ ° h¿

n©b¤7¥ ¬ ®Y¯@°>±

¬~ªQªJ« N

{©b¤7¥ ¬ ®f¯Q°>±

¬~ªQªJ«

f act Â

í u¥ ±

§ §Q³

Tª{Yª

©F§

Š«vª

Ç

f act(n) =

{ 1 ¬« n = 0 n × f act(n − 1) ª

b¤7¥T¨ (^) Ç ¬ c¿

˜X™rš>›'œž ŸóÅ1¥T© ° h¿D±Hª@7¿€¬~¯

T¨|©®¤>¥

¥v© E ¬®Y¯Q°>±

T³μ´ ¯

쬮<ô

É

h§ Á

¦Y³M¥Fõ Â

¢f¤>¥k¥:Év¦f¨:¥ ¿ y¿€¬~ªQ>¿ ªz« E

žÉ

_§Q©

~ªQfÂ÷öFªQ¿

_§Q©

~ªQø±

vªt·

°h¿

ªù¯

{¦7§@¨:¥ ©b¤7¥ ¿

¥:Év¦f¨:¥ ¯ ¿ y¿€¬~ªQ>¿TÂ5ê1ª

Ê

b¤7¥F¦ ª Ó¿

žÉn¥HÉv¦Y¨:¥ ¿ y¿€¬~ªQ ªJ« ((a × (b + c)) + d) ¬c¿ abc + ×d+  ¢f¤7¥m© ¨H§ 7¿b«vª

Á

~ª@m«

ª@Áú¬®

1É{©

Q¿

¬®Y¯@°>±

T³μ´ ¯

Š«vª

Ç

û