

Study with the several resources on Docsity
Earn points by helping other students or get them with a premium plan
Prepare for your exams
Study with the several resources on Docsity
Earn points to download
Earn points by helping other students or get them with a premium plan
Community
Ask the community for help and clear up your study doubts
Discover the best universities in your country according to Docsity users
Free resources
Download our free guides on studying techniques, anxiety management strategies, and thesis advice from Docsity tutors
Material Type: Notes; Professor: Ceberio; Class: Logical Foundations of CS; Subject: Computer Science; University: University of Texas - El Paso; Term: Fall 2005;
Typology: Study notes
1 / 3
This page cannot be seen from the preview
Don't miss anything!
3 547698:6<;>=@?:6A8CBD69E:6BFEHGI?J?:69;LK>8:GM;7N OLPQ?:4>RTSUPQ?HGMVK76A8XWY=ZK7EC[]\ ^_;a`b=E:SUP@?:GcVK>6Zdfehgjik;>laEHRmiXE:;>=Z[cl P@;>ln^_EHoT;76pCK76A8:8HP@EHGMPZ;rq
3 5476TgtsT=ZSuW7[M6v?:6j?:476 sv=ZK>EH8:6jNZGMwZ69;tlaK7EHGI;7N?:476Lx>Ey8z?{B|6T69}=Z<sv[cPZ8H8TdF=;tW7EH==Z
~8TdFGM;>laKs?:GMwZ la6vx;7G?HGI=;>89d>P@;>lnW7EH=h=@`~85ehgGM;>laK>sv?:GM=Z;rq
f n 1vn5 y1v
r6T?9\ 8 5E:69wGM6TBPusv=ZK>W7[I6=Z`16TaPZSuW7[I6A8T
Xr>' ¡£¢f¤>¥F¦>§Q¨© X ªz« N ¬®f¯Q°>±
T³μ´ ¯
0 ∈ X ¹b½¾» n ∈ X ⇒ n + 1 ∈ X
¬c¿À¿y¬®Á
Y¤>¥v¨H¥ « vª
:¥ ¹bºÃ»^ § f¯
b½¾» ± yªQ>¿
L¬®f¯Q°>±
¬~ªQ'ªz« NÂ
Xr>' jÄÅ1¥T© A = {(, )}
b¤7¥u§Q³ ¦7¤7§ ·
¥v© Á
z«Æ·yª
b¤u¦>§Q¨H¥ ©®¤>¥ ¿
vÂ
f¤7¥ ¿
Ç ¥v³®³È^ «vª ¨Á ¥¯ ¥Hɦf¨:¥^ ¿H¿¬~ª@7¿ Ç ¬©b¤m¦>§Q¨:¥^ ©b¤7¥^ ¿¬c¿HÊ5± §@³®³I¥^ ¯ ©b¤7¥CË<´^ ±HÌ ³I§^ hÍ@° §Í¥Êάc¿<¯ ¥¶ ¥¯{· ´Z¸
¹~º¼» ∈ D ¹b½¾» x, y ∈ D ⇒ (x), xy ∈ D
Xr>' Ï¢f¤>¥ ¿
E ªz« Ç
v³®³@¦7§@¨:¥ ©b¤7¥ ¿
¥:Év¦f¨:¥ ¿ y¿¬~ªQ>¿yÊÁ
ªJ«k¬~¯
|¥v¨ ¿ Ы
¦>¥v¨H§Q© ª
f¯ ×Ê ¬c¿
°>·v¿
J« (A ∪ {+, ×})∗^ ¬®f¯Q°>±
v³´ ¯
«vª
A ⊆ E ¹b½¾» e, f ∈ E ⇒ (e + f ), (e × f ) ∈ E
Xr>' ÑÒ¢f¤>¥ ¿
¥v© BT ªz«u·v¬®
Q¨´©]¨:¥y¥ ¿
§Q¨:¥{¥v³I¥ Á
mªJ«
¥v© ©®¤>¥ A^ ¬c¿ ¿ °>·v¿
v© ª z« (A ∪ {∅, (, ), , })∗^ ¬®Y¯@°>±
T³μ´ ¯
«vª
∅ ∈ AB
¬c¿
b¤7¥Æ¥ Á ¦f© ´U©]¨:¥y¥ »
¹b½¾» l, r ∈ AB ⇒ ∀a ∈ A, (a, l, r) ∈ AB
b¤7¥U©]¨:¥y¥ ª J«
a ÊCªJ«
]¨:¥y¥ l
h© ¿ °>·
]¨:¥y¥ r
ÕnÖ¼×1Ø~Ù9Ø Ú×¡Û ¬®f¯Q°>±
X ¬c¿Yª@
ÁU·T¬Í@°>ª@°h¿{¬c¿X«vª
n§@³®³ ©®¤>¥v¨H¥m¥HÉ x^ ∈^ X^ Ê ¬ c¿
ܰa>¬~ÝT°
x ·
{§y¦Z¦Y³´ ¬ ®Í
b¤7¥ ¬ ®Y¯Q°>±
vÂ
Xr>' jÞߢf¤>¥ « vª
®hÍ ¬®Y¯@°>±
¬~ªQ ªJ« N^2 ¬c¿
ÁU·T¬Í@°>ª@°h¿
(0, 0) ∈ N^2 ¹ I 1
(n, m)^ ∈^ N^2 ⇒^ (n^ + 1, m)^ ∈^ N^2 ¹ I 2
(n, m)^ ∈^ N^2 ⇒^ (n, m^ + 1)^ ∈^ N^2
à áâ¼UãäÆå!v nÎ1v
Xr>' æÅ1¥T©Aç ¿
b¤7§@©C§@³®³ ¿
®hÍQ¿u¬®
b¤7¥ÆË´ ± yÌ
D ±yªQ
è ( é
è ) é~ÂFê1ª
x ∈ DÊ l(x) ¯
°aÁU·
v¨ ª z«
è ( é
f¯ r(x) ¯
°aÁU·
v¨ ª z«
è ) é~Â
1¥v© P (x)
®¤>¥5¦f¨ ª
¦>¥v¨©]´ (^) Ç ¥ Ç § ©Î© ª
P (x) : l(x) = r(x)  ¹~º¼» (^) ©b¤7¥ ª Q
μ´n¥T³I¥ Á
b¤7¥ ·
¬c¿À¬c¿ Ê
b¤7¥Æ¥ Á
®hÍÂkëfª¬
c¿
P
l() = r() = 0 ¹b½¾» (^) Å1¥T© x, y ∈ D Êÿ°>±
P (x)
f¯ P (y) Â
1¥v© z = xy
l(z) = l(x) + l(y) = r(x) + r(y) = r(z) ¢f¤>¥v¨:¥ « vª
P (xy) ÂìëY¬®Ám¬
I§@¨³μ´ (^) Ç ¥ ¿
P ((x))Â íÆ¥ ¯
b¤7¥Æ§ · yªQ²
©b¤7§@© ∀x ∈ D Ê l(x) = r(x)Â
î f n 1vFïåð 5 FðãQ nÎ1v< n
Xr>' jñߢf¤>¥ «
y°af±
N → N ¬c¿¬®Y¯@°>±
T³μ´ ¯
f act(0) = 1 ¹b½¾» f act(n + 1) = (n + 1) × f act(n)
ò<¥T¨:¥ (^) Ç ¥ ° h¿
n©b¤7¥ ¬ ®Y¯@°>±
vª
{©b¤7¥ ¬ ®f¯Q°>±
f act Â
í u¥ ±
«vª
f act(n) =
{ 1 ¬« n = 0 n × f act(n − 1) ª
b¤7¥T¨ (^) Ç ¬ c¿
Xr>' óÅ1¥T© ° h¿D±Hª@7¿¬~¯
¥v© E ¬®Y¯Q°>±
T³μ´ ¯
쬮<ô
h§ Á
¦Y³M¥Fõ Â
¢f¤>¥k¥:Év¦f¨:¥ ¿ y¿¬~ªQ>¿ ªz« E
~ªQfÂ÷öFªQ¿
fª
~ªQø±
vªt·
°h¿
ªù¯
{¦7§@¨:¥ ©b¤7¥ ¿
¥:Év¦f¨:¥ ¯ ¿ y¿¬~ªQ>¿TÂ5ê1ª
b¤7¥F¦ ª Ó¿
Én¥HÉv¦Y¨:¥ ¿ y¿¬~ªQ ªJ« ((a × (b + c)) + d) ¬c¿ abc + ×d+  ¢f¤7¥m© ¨H§ 7¿b«vª
~ª@m«
ª@Áú¬®
T³μ´ ¯
«vª
û