Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Math 234, Spring 2008: Solutions to Homework Problems from Sections 12.4 and 12.6, Assignments of Advanced Calculus

Solutions to homework problems from sections 12.4 and 12.6 of a university-level mathematics course, math 234, taught in spring 2008. Calculations and integrals related to vector calculus, polar coordinates, and surface integrals.

Typology: Assignments

Pre 2010

Uploaded on 08/13/2009

koofers-user-ypc
koofers-user-ypc 🇺🇸

10 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Solutions to Homework from Sections 12.4, 12.6
Math 234, Spring 2008
Section 12.4
10.
ZZR
(x+y)dA =Z3π/2
π/2Z2
1
(rcos θ+rsin θ)r dr = Z3π/2
π/2
(cos θ+ sin θ)!Z2
1
r2dr
=sin θcos θ|3π/2
π/2 r3
3
2
1!= (101 + 0) 8
31
3=14
3
20. The paraboloid z= 1 + 2x2+ 2y2meets the plane z= 7 where 7 = 1 +2x2+ 2y2=2x2+ 2y2= 6 =x2+y2= 3,
so the domain of integration is the part of the circle about the origin of radius 3 in the first quadrant.
Volume = Zπ/2
0Z3
0
(7 (1 + 2r2)) r dr =π
2Z3
0
(6r2r3)dr =π
2 3r21
2r4
3
0!=π
299
2=9π
4
30. (a)
Z2π
0ZR
0
err dr = 2πZR
0
err dr
We can do this integral using integration by parts, or we can look it up in the table of integrals:
Volume = 2πZR
0
err dr = 2π(r1)er
R
0= 2π((R1)eR+ 1) = 2π(1 eRReR) ft3
(b) The average volume per square foot is obtained by dividing the total volume by the area of the circle of radius R:
Average = 2π(1 eRReR)
πR2=2(1 eRReR)
R2ft3/ft2
Section 12.6
10. We can view this as the graph of x=f(y, z) = y2+z2, so the surface area is given by:
ZZRs1 + ∂f
∂y 2
+∂f
∂z 2
dy dz =ZZRp1+4y2+ 4z2dy dz
To do this integral over the disk y2+z29, we convert to polar coordinates:
ZZRp1+4y2+ 4z2dy dz =Z2π
0Z3
0p1+4r2r dr = 2πZ3
0p1+4r2r dr = 2π1
8 2
3(1 + 4r2)3/2
3
0!=π
6(373/21)
20. (a) ~r(u, v) = hau cos v, bu sin v , u2i. So ~ru=hacos v, b sin v, 2uiand ~rv=h−au sin v , bu cos v, 0i. This means that
~ru×~rv=h−2bu2cos v, 2au2sin v, abu cos2v+abu sin2vi=h−2bu2cos v , 2au2sin v, abui. So |~ru×~rv|=
p4b2u4cos2v+ 4a2u4sin2v+a2b2u2=up4b2u2cos2v+ 4a2u2sin2v+a2b2. This means that the surface area
is given by:
Z2π
0Z2
0
up4b2u2cos2v+ 4a2u2sin2v+a2b2du dv
(b) Since x
a=ucos vand y
b=usin v, we observe that:
x
a2+y
b2=u2cos2v+u2sin2v=u2=z
pf2

Partial preview of the text

Download Math 234, Spring 2008: Solutions to Homework Problems from Sections 12.4 and 12.6 and more Assignments Advanced Calculus in PDF only on Docsity!

Solutions to Homework from Sections 12.4, 12.

Math 234, Spring 2008

Section 12.

R

(x + y) dA =

∫ (^3) π/ 2

π/ 2

1

(r cos θ + r sin θ)r dr dθ =

∫ (^3) π/ 2

π/ 2

(cos θ + sin θ) dθ

2

1

r

2 dr

sin θ − cos θ|

3 π/ 2 π/ 2

r

3

2

1

  1. The paraboloid z = 1 + 2x

2

  • 2y

2 meets the plane z = 7 where 7 = 1 + 2x

2

  • 2y

2 =⇒ 2 x

2

  • 2y

2 = 6 =⇒ x

2

  • y

2 = 3,

so the domain of integration is the part of the circle about the origin of radius

3 in the first quadrant.

Volume =

∫ (^) π/ 2

0

√ 3

0

(7 − (1 + 2r

2 )) r dr dθ =

π

√ 3

0

(6r − 2 r

3 ) dr =

π

3 r

2 −

r

4

√ 3

0

π

9 π

  1. (a) ∫ (^2) π

0

∫ R

0

e

−r r dr dθ = 2π

∫ R

0

e

−r r dr

We can do this integral using integration by parts, or we can look it up in the table of integrals:

Volume = 2π

∫ R

0

e

−r r dr = 2π

(−r − 1)e

−r

R

0

= 2π((−R − 1)e

−R

    1. = 2π(1 − e

−R − Re

−R ) ft

3

(b) The average volume per square foot is obtained by dividing the total volume by the area of the circle of radius R:

Average =

2 π(1 − e −R − Re −R )

πR 2

2(1 − e −R − Re −R )

R

2

ft

3 /ft

2

Section 12.

  1. We can view this as the graph of x = f (y, z) = y

2

  • z

2 , so the surface area is given by:

R

∂f

∂y

∂f

∂z

dy dz =

R

1 + 4y 2

  • 4z 2 dy dz

To do this integral over the disk y 2

  • z 2 ≤ 9, we convert to polar coordinates:

R

1 + 4y 2

  • 4z 2 dy dz =

2 π

0

3

0

1 + 4r 2 r dr dθ = 2π

3

0

1 + 4r 2 r dr = 2π

(1 + 4r

2 )

3 / 2

3

0

π

3 / 2 −1)

  1. (a) ~r(u, v) = 〈au cos v, bu sin v, u 2 〉. So ~ru = 〈a cos v, b sin v, 2 u〉 and ~rv = 〈−au sin v, bu cos v, 0 〉. This means that

~ru × ~rv = 〈− 2 bu 2 cos v, − 2 au 2 sin v, abu cos 2 v + abu sin

2 v〉 = 〈− 2 bu 2 cos v, − 2 au 2 sin v, abu〉. So |~ru × ~rv | = √

4 b^2 u^4 cos^2 v + 4a^2 u^4 sin

2 v + a^2 b^2 u^2 = u

4 b^2 u^2 cos^2 v + 4a^2 u^2 sin

2 v + a^2 b^2. This means that the surface area

is given by: ∫ 2 π

0

2

0

u

4 b 2 u 2 cos 2 v + 4a 2 u 2 sin

2 v + a 2 b 2 du dv

(b) Since x a

= u cos v and

y b

= u sin v, we observe that:

x

a

y

b

= u

2 cos

2 v + u

2 sin

2 v = u

2 = z

So our surface is the graph of the function z =

x a

y b

over the region 0 ≤

x a

y b

≤ 4. So we can also

write the following expression for the surface area:

2 a

− 2 a

b

4 −(x^2 /a^2 )

−b

4 −(x^2 /a^2 )

2 x

a 2

2 y

b 2

dy dx

(c) Below is a picture of the surface for a = 2 and b = 3.

  • 4
    • 2

0

2

4

X (^) - 5

0

5

Y

0

1

2

3

4

Z

(d) The area of the surface is approximately 115.66. We used the command

NIntegrate[ u Sqrt[36 u^2 (Cos[v])^2 + 16 u^2 (Sin[v])^2 + 36], {u, 0, 2}, {v, 0, 2 Pi}]

  1. The vector function for the surface is ~r(α, θ) = 〈b cos θ + a cos α cos θ, b sin θ + a cos α sin θ, a sin α〉, so

~rα = 〈−a sin α cos θ, −a sin α sin θ, a cos α〉

~rθ = 〈−b sin θ − a cos α sin θ, b cos θ + a cos α cos θ, 0 〉

This means

~rα × ~rθ = 〈−ab cos α cos θ − a

2 cos

2 α cos θ, −ab cos α sin θ − a

2 cos

2 α sin θ,

−ab sin α cos

2 θ − a

2 cos α sin α cos

2 θ − ab sin α sin

2 θ − a

2 sin α cos α sin

2 θ〉

= 〈−ab cos α cos θ − a

2 cos

2 α cos θ, −ab cos α sin θ − a

2 cos

2 α sin θ, −ab sin α − a

2 cos α sin α〉

So

|~rα × ~rθ | =

(ab cos α + a^2 cos^2 α)^2 + (ab sin α + a^2 cos α sin α)^2

(ab + a 2 cos α) 2 (cos 2 α + sin

2 α) = ab + a

2 cos α

Now we can compute the surface area of the torus:

Surface Area =

2 π

0

2 π

0

(ab + a

2 cos α) dα dθ = 2π

2 π

0

(ab + a

2 cos α) dα

= 2π

abα + a

2 sin α

2 π

0

= 2π(2abπ + 0 − 0 − 0) = 4abπ

2