Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Escape Velocity and Conservation of Energy: A Physics Exercise, Assignments of Mechanics

A physics exercise exploring the concept of escape velocity and its relationship to the conservation of energy. It includes calculations and explanations of key principles, such as gravitational potential energy and kinetic energy. The document also demonstrates the application of these concepts in a practical scenario, providing a clear understanding of escape velocity and its significance in space exploration.

Typology: Assignments

2023/2024

Uploaded on 11/25/2024

parijat-1
parijat-1 🇺🇸

1 document

1 / 6

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Hw-1,PARI
TA
T
BANGR
TEE
12-
escepe
velbcty)
-here
iS
no
We
can
-ESsepe
velocty
om
Surfue
is
mihimm
tmosphe rit
resistonce
So
he
Sy
ste
is
Con
Servative
.
pstetia
ernegy
Psth
ivon:
G=
6.67
xmk's
Re
=
6371
kmy
Me=
6x|o
Ikg
Scme
ot
sofce
far
bjeet
mass
(m)
= -
GMm
CM-So7
Re
vebaty
reguived
for
a
par
hele
to
At
r>
o,o
.'.
At
Y>,
V2
0.
byet
e
to
erh
atany
distomce
Y>
Re
-
aMm
r.
Aso,
at
r’e,
the
kE
()=
O,it
we
neac
he
min.
escepe
velocity,
-the
oorhc
-be
ponkc
le
just
reches
2GM
Re
Re
Re
2x6-67KID
X
6xo4
6371
x1o3
=
||
2o8.5
ms
nl.
2 kms :.D
trovee
Conservahan
þriheiHe
ener95
T
+V=
T4V2.
pf3
pf4
pf5

Partial preview of the text

Download Escape Velocity and Conservation of Energy: A Physics Exercise and more Assignments Mechanics in PDF only on Docsity!

Hw-1,PARI TA T BANGR TEE

12--here escepe iSvelbcty) no

We can

-ESsepe velocty om Surfue is mihimm

tmosphe rit^ resistonce^ So^ he^ Sy^ ste^ is^ Con^ Servative^.

Psthpstetia^ ernegy

ivon: G= 6.67^ xmk's^ Re^ =^6371 kmy^ Me=^ 6x|o^ Ikg

Scme

ot sofce^ far^ bjeet^ mass(m)^ = -^ GMm

CM-So

Re

vebaty reguived^ for^ a^ par^ hele^ to

At r> o,o .'. At Y>,V2 0.

byet e^ to^ erh^ atany^ distomce^ Y>^ Re^ -^ aMm

-the-beAso, ponkcoorhcat^ r’e,^ le^ just^ the^ reches^ kEr.^ ()=^ O,it^ we^ neac^ he^ min.^ escepe^ velocity,

2GMRe

Re

2x6-67KID X 6xo4Re

6371 x1o3 =nl.^ || 2o8.52kms :.D^ ms trovee

Conservahan þriheiHe^ ener95^ T^ +V=^ T4V2.

(X,YYoCenter d Posim masses : Take (^) dtd to

2

I

=(acos &, asin o

2

X,=(acos8 coso, a sino tsind

V+V = 2&9+

2

2

TheCordncte se tuo aGngles this olescrbes 6 areall heposi hns 2 2 gene roleod vebaheo

2

Lot he centev he yod on he civele

2

and (^) let the (^) rod make (^) amg le a (^) win he

Ttal ke CT)^ =^ Lmvt^ +^ Lm^ =^ Jnlvv$).

+ acos +e cos t al caso cos o

whele the t sig tels abot bo macsey. Ohe has t, Sne has -.

  • e

4

2

4

2

(^2) al Sinb Sin o e d

( The^ t^ tevwms^ cemad^ ot^ ahen^ you^ add^ ) T6telCoor dnatey kinehc energy in hen

.8= k

eg:

M

dt

Sd

dfalt

mi

ShceCen petal The 7ce Sish amd sn )ehegràvt, RHs isSo ohhosite,e Sy stemn >Covldhereig be ain^ tateeab^ betueen

Let M mitmz CTstal mass)

dtL^ dtd

m,

Since he Lagrngian doent des end n tme explicty: 4:-L = Const =

dt dt

2d (^) ovder

Dg t

wheve k DDis a cnst

Enrgy Stem (E)

=dHdT

2

M

Since g =^ k

2

for fe atlng body

2

Genealeed cssvchte :

is nfdf.

2

ThisUSng isa (mstent^ The(snstont^ first Dtermim^ CE).he^ Sermol^ srder^ a:.^ esu^ obteihed

2

23 Far^ d'ssipetive^ foces^ :CvNf^ to)

2

2- m,

2

k

whee (^) Si is^ General:ed^ fce^ S=-SE

  • mmgl4mg

-V=

nomjevotive,

T= Lm (knehc Cnerg)

2