Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Math 153 Exam IIB Problems and Solutions, Exams of Pre-Calculus

Six problems from math 153 exam iib, covering topics such as domain of a function, average rate of change, graph analysis, and inverse functions. Each problem includes a detailed solution to help students understand the concepts and methods used to solve them.

Typology: Exams

Pre 2010

Uploaded on 08/19/2009

koofers-user-jxr-1
koofers-user-jxr-1 🇺🇸

10 documents

1 / 7

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Math 153 Exam IIB
Problem 1 (10 points): For this problem, use the function fgiven
by
f(x) = x+ 1
x2
Part a (5 pts): What is the domain of f. Write your answer in interval
notation.
Part b (5 pts): What is the average rate of change of fover the interval
[3,8].
1
pf3
pf4
pf5

Partial preview of the text

Download Math 153 Exam IIB Problems and Solutions and more Exams Pre-Calculus in PDF only on Docsity!

Problem 1 (10 points): For this problem, use the function f given

by

f (x) =

x + 1 x − 2

Part a (5 pts): What is the domain of f. Write your answer in interval notation.

Part b (5 pts): What is the average rate of change of f over the interval [3, 8].

Problem 2 (10 points): Graph the function f given below on your

calculator and determine the coordinates where f acheives a maximum. Your answer should be rounded to three (3) digits after the decimal place.

f (x) = x^3 − 4 x^2 − 2 x − 1

Problem 4 (15 points): The function f is given below, determine

the following values.

f (x) =

3 x + 3 2 − 4 x

Part a (5 pts): Compute (f ◦ f )(2)

Part b (10 pts): Compute f −^1 (z)

Problem 5 (15 points): The graph of y = f (x) is given below. Draw

the graph of y = 8f (4 − 3 x) + 1.

1 3 4 5 8

0

1

2

3

4

Teacher: A. Montgomery Name: Term: Spring 2008

Problem Possible Score 1 10 2 10 3 10 4 15 5 15 6 15 Total 75

m =

y 2 − y 1 x 2 − x 1 y − y 1 = m(x − x 1 ) (x − h)^2 + (y − k)^2 = r^2 d =

(x 2 − x 1 )^2 + (y 2 − y 1 )^2

ax^2 + bx + c = 0 =⇒ x =

−b ±

b^2 − 4 ac 2 a