Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Analytic Trigonometry - Lecture Notes | MATH 124, Study notes of Trigonometry

Material Type: Notes; Class: College Trigonometry; Subject: Mathematics; University: Fayetteville State University; Term: Unknown 1989;

Typology: Study notes

Pre 2010

Uploaded on 08/18/2009

koofers-user-l14
koofers-user-l14 🇺🇸

5

(1)

10 documents

1 / 26

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Chapter 3. Analytic Trigonometry
3.1 The inverse sine, cosine, and tangent functions
1. Review: Inverse function
(1) f1(f(x)) = xfor every xin the domain of fand f(f1(x)) = xfor every xin the domain
of f1.
(2) Domain of f= range of f1, and range of f= domain of f1.
(3) The graph of fand the graph of f1are symmetric with respect to the line y=x.
(4) If a function y=f(x) has an inverse function, the equation of the inverse function is
x=f(y). The solution of this equation is y=f1(x).
2. The inverse sine function
If we restrict the domain of y= sin xto [π
2,π
2], the restrict function
y= sin x, π
2xπ
2
will have an inverse function. We call it the of x. We denote it by :
y= sin1xmeans x= sin y,
where 1x1 and π
2yπ
2
3. Graph y= sin1x.
Domain of y= sin1xis and range is .
1
pf3
pf4
pf5
pf8
pf9
pfa
pfd
pfe
pff
pf12
pf13
pf14
pf15
pf16
pf17
pf18
pf19
pf1a

Partial preview of the text

Download Analytic Trigonometry - Lecture Notes | MATH 124 and more Study notes Trigonometry in PDF only on Docsity!

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions

  1. Review: Inverse function (1) f −^1 (f (x)) = x for every x in the domain of f and f (f −^1 (x)) = x for every x in the domain of f −^1. (2) Domain of f = range of f −^1 , and range of f = domain of f −^1. (3) The graph of f and the graph of f −^1 are symmetric with respect to the line y = x. (4) If a function y = f (x) has an inverse function, the equation of the inverse function is x = f (y). The solution of this equation is y = f −^1 (x).
  2. The inverse sine function

If we restrict the domain of y = sin x to [−π 2 , π 2 ], the restrict function

y = sin x, −π 2 ≤ x ≤ π 2

will have an inverse function. We call it the of x. We denote it by :

y = sin−^1 x means x = sin y, where − 1 ≤ x ≤ 1 and −π 2 ≤ y ≤ π 2

  1. Graph y = sin−^1 x.

Domain of y = sin−^1 x is and range is.

  1. Example: Find the exact value of sin−^1 (−^12 ).
  2. Remark: sin−^1 (sin x) = x, where −π 2 ≤ x ≤ π 2 sin(sin−^1 x) = x, where − 1 ≤ x ≤ 1
  3. Example: Find the exact value of (1) sin−^1 [sin(π 8 )]

(2) sin[sin−^1 (−

√ 3 2 )]

  1. Example: Find the exact value of cos−^1 (−

√ 2 2 ).

  1. Remark: cos−^1 (cos x) = x, where 0 ≤ x ≤ π cos(cos−^1 x) = x, where − 1 ≤ x ≤ 1
  2. Example: Find the exact values of

(1) cos−^1 [cos( 12 π )]

(2) cos[cos−^1 (− 0 .4)]

  1. The inverse tangent function

If we restrict the domain of y = tan x to (−π 2 , π 2 ), the restrict function y = tan x, −π 2 < x < π 2 will have an inverse function. We call it the of x. We denote it by :

y = tan−^1 x means x = tan y, where −∞ < x < ∞ and −π 2 < y < π 2

  1. Graph y = tan−^1 x.

Domain of y = tan−^1 x is and range is.

  1. Example: Find the exact value of tan−^1 (−
  1. Remark: tan−^1 (tan x) = x, where −π 2 < x < π 2 tan(tan−^1 x) = x, where −∞ < x < ∞
  2. Example: Find the exact values of

(1) tan−^1 [tan(π 8 )]

(2) tan[tan−^1 (6)]

  1. Example: Find the exact value of cos[sin−^1 (−^13 )].
  2. Example: Find the exact value of tan[cos−^1 (−^13 )].
  1. The remaining inverse trigonometric functions: y = sec−^1 x means x = sec y, where |x| ≥ 1 and 0 ≤ y ≤ π, y 6 = π 2. y = csc−^1 x means x = csc y, where |x| ≥ 1 and −π 2 ≤ y ≤ π 2 , y 6 = 0. y = cot−^1 x means x = cot y, where −∞ < x < ∞ and 0 < y < π.
  2. Example: Find the exact value of csc−^1 2.
  1. Example: Establish the following identities: (1) csc θ · tan θ = sec θ

(2)sin^2 (−θ) + cos^2 (−θ) = 1

(3) sinsin(^2 (−−θθ))−−coscos(^2 −(−θθ) )= cos θ − sin θ

(4) 1+tan 1+cot θθ = tan θ

(5) (^) 1+cossin^ θ θ + 1+cos sin θ^ θ= 2 csc θ

(6) tan sec^ θ θ+cot csc θ^ θ = 1

(7) 1 − cossin θ^ θ= (^) 1+sincos^ θ θ

3.4 Sum and difference formulas

  1. Sum and difference formulas for cosines cos(α + β) = cos α cos β − sin α sin β cos(α − β) = cos α cos β + sin α sin β
  2. Example: Find the exact values of cos 75^0 and cos 12 π.
    1. cos(π 2 − θ) = sin θ sin(π 2 − θ) = cos θ
  1. Sum and difference formulas for sines sin(α + β) = sin α cos β + cos α sin β sin(α − β) = sin α cos β − cos α sin β
  2. Example: Find the exact values of sin 712 π and sin 80^0 cos 20^0 − cos 80^0 sin 20^0.
  3. Example: If it is known that sin α = 45 , π 2 < α < π, and that sin β = − √^25 = −^2

√ 5 5 ,^ π < β <^

3 π 2 , find the exact value of (1) cos α

(2) cos β

(3) cos(α + β)

  1. Example: Prove the identity tan(θ + π 2 ) = − cot θ.
  2. Example: Find the exact value of sin(cos−1 1 2 + sin−1 3 5 ).
  3. Example: Write sin(sin−^1 u + cos−^1 v) as an algebraic expression containing u and v (that is, without any trigonometric functions).

3.5 Double-angle and half-angle formulas

  1. Double-angle formulas sin(2θ) = 2 sin θ cos θ cos(2θ) = cos^2 θ − sin^2 θ cos(2θ) = 1 − 2 sin^2 θ cos(2θ) = 2 cos^2 θ − 1
  2. Example: If sin θ = 35 , π 2 < θ < π, find the exact values of sin(2θ) and cos(2θ).
  3. Example: (1) Develop a formula for tan(2θ) in terms of tan θ.

(2) Develop a formula for sin(3θ) in terms of sin θ and cos θ.

  1. Example: If cos α = −^35 , π < α < 32 π , find the exact value of (1) sin α 2

(2) cos α 2

(3) tan α 2.

  1. Half-angle for tan α 2 tan α 2 = 1 − sincos α^ α= (^) 1+cossin^ α α.

3.6 Product-to-sum and sum-to-product formulas

  1. Product-to-sum formulas sin α sin β = 12 [cos(α − β) − cos(α + β)] cos α cos β = 12 [cos(α − β) + cos(α + β)] sin α cos β = 12 [sin(α + β) + sin(α − β)]
  2. Example: Express each of the following products as a sum containing only sines or cosines: (1) sin(6θ) sin(4θ)

(2) cos(3θ) cos θ

(3) sin(3θ) cos(5θ)

  1. Sum-to-product formulas sin α + sin β = 2 sin α+ 2 βcos α− 2 β, sin α − sin β = 2 sin α− 2 βcos α+ 2 β cos α + cos β = 2 cos α+ 2 βcos α− 2 β, cos α − cos β = −2 sin α+ 2 βsin α− 2 β